Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ван-дер-Ваальса ковалентная

Кроме двух наиболее типичных химических связей — ковалентной и ионной различают межмолекулярные связи, возникающие вследствие действия универсальных сил Ван-дер-Ваальса, и металлические связи.  [c.10]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]


Связь между атомами в кристалле почти полностью обеспечивается силами электростатического притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Роль сил магнитного происхождения очень незначительна, а гравитационными силами вообще можно пренебречь. Задав пространственное распределение электронов и ядер в кристаллах и распределение их скоростей (это в принципе можно выполнить методами квантовой механики), можно рассчитать энергию связи в кристалле. Такие специальные понятия, как энергия обменного взаимодействия (обменная энергия), силы Ван-дер-Ваальса, резонансная энергия стабилизации, ковалентные силы, используются только для обозначения сильно различающихся ситуаций.  [c.25]

Четвертый вид связи — молекулярная связь (связь Ван-дер-Ваальса). Такая связь существует в некоторых веществах между молекулами с ковалентными внутримолекулярными связями. Меж-молекулярное притяжение в этом случае обусловливается согласованным движением валентных электронов в соседних молекулах (рис. В-4), в любой момент времени электроны максимально удалены друг от друга и максимально приближены к положительным зарядам. При этом силы притяжения валентных электронов положительно заряженными остовами соседних молекул оказываются сильнее сил  [c.10]

Наиболее важным для технологии примером сил Ван-дер -Ваальса является сцепление между макромолекулами в термопластических полимерных материалах, когда связь внутри молекулы или цепочки является ковалентной.  [c.28]

Соединение металлических частиц с поверхностью детали и между собой носит в основном механический характер - за поры и специально подготовленный профиль в виде рваной резьбы. Имеются силы физического взаимодействия (например, силы Ван-дер-Ваальса), силы металлической связи за счет коллективизации валентных электронов и связи ковалентного типа.  [c.338]

В слоистой ГП решетке графита один из четырех соседей (см. жирные линии на рис. 1.11) находится на значительном удалении. Между тремя атомами в плоскости основания решетки действуют ковалентные силы, а между основаниями — слабые силы Ван-дер-Ваальса. При деформации графита в первую очередь разрушаются связи между слоями, чем и объясняется низкая твердость графита. Коэффициент линейного расширения велик в направлении действия сил Ван-дер-Ваальса (см. табл. 1.2).  [c.18]

Это различие поведения при нагреве объясняется тем, что у термопластичных полимеров между молекулами действуют относительно слабые силы Ван-дер-Ваальса. При нагреве связи между молекулами значительно ослабляются, материал становится мягким и податливым. У термореактивных полимеров кроме сил Ван-дер-Ваальса имеются поперечные ковалентные связи между молекулами. Благодаря им термореактивный материал остается твердым при нагреве.  [c.40]


Прочность сцепления покрытия с основным металлом является одним из важных факторов, характеризующих возможность применения металлических покрытий [1]. Степень сцепления определяется силами притяжения, действующими между атомами основного металла и покрытия. Характер сил, обусловливающих сцепляемость, может быть различным в зависимости от природы основного и осаждаемого металла. Межатомные силы взаимодействия можно разделить на следующие группы 1) силы Ван-дер-Ваальса 2) ковалентные силы 3) металлические связи 4) ионные или полярные связи. Проблема межатомного взаимодействия и сцепления исключительно сложна. В литературе обычно рассматриваются очень простые случаи взаимодействия атомов [2].  [c.325]

Макромолекулы полимеров могут иметь линейную, разветвленную или сетчатую (сшитую) структуру (рис. 32.1). Внутри макромолекулы между атомами во всех трех случаях действуют прочные ковалентные связи, энергия которых 300—500 кДж/моль. У полимеров с линейной и разветвленной структурой между макромолекулами чаш,е всего действуют силы притяжения отрицательных и положительных частиц (силы Ван-дер-Ваальса),эне-  [c.451]

Внутри цепочек атомы связаны при помощи ковалентной связи. Между цепочками связь слабее, чем внутри и осуществляется в результате взаимодействия анионов с катионами, т. е. при переходе электронов от катионов 5Ь к аниону 5е или при гибридизации р- и -орбит у катионов. Ленты связаны между собой слабыми силами Ван-дер-Ваальса.  [c.19]

Кроме того, в кристаллах элементов может наблюдаться еще один вид связи, обусловленный силами Ван-дер-Ваальса. Эта связь возникает в результате электростатического притяжения частиц, у которых при сближении образуются участки с устойчивыми разноименными электрическими зарядами. Такая связь обычно действует между молекулами кристаллических веществ. Например, силы Ван-дер-Ваальса удерживают двухатомные молекулы иода в кристаллах этого элемента, а между двумя атомами в молекуле действует ковалентная связь. Силы Ван-дер-Ваальса во много раз слабее тех сил, которые определяют ковалентную и металлическую связи, поэтому кристаллы со связями Ван-дер-Ваальса между частицами обычно обладают малой прочностью, низкой температурой плавления и кипения (или возгонки). Связь Ван-дер-Ваальса характерна для многих органических соединений.  [c.20]

Ковалентные силы химической связи I Дисперсионные силы ван дер Ваальса  [c.125]

У подгруппы VIb (S, Se, Те, Ро) степень ковалентности выражена меньше видимо, в этом случае значительнее проявляются силы Ван-дер-Ваальса, хотя, как и в Vs подгруппе, тяжелые элементы металлических структур не образуют.  [c.185]

В физике различают четыре типа элементарных связей ковалентную, ионную, межмолекулярную (Ван-дер-Ваальса) и металлическую. В зависимости от преобладающих элементарных связей кристаллы также различают соответственно по четырем группам атомные, ионные, молекулярные и металлические.  [c.8]

Хотя силы межмолекулярного взаимодействия (Ван-дер-Ваальса) значительно меньше ионных или ковалентных сил, они обладают некоторыми уникальными свойствами, которые в определенных ситуациях делают их доминирующими. Прежде всего, силы Ван-дер-Ваальса можно рассматривать как универ-  [c.65]

Электролитическое осаждение не будет эпитаксиальным, если подложка является полупроводником. Металлический осадок в этом случае не может образовать сильные связи с решеткой подложки и выигрыш в энергии за счет координации на границе раздела будет гораздо меньше потерь на деформацию решеток. Этот случай противоположен ситуации на границе раздела металл — металл и равновесной конфигурацией будет такая, при которой каждая -решетка сохраняет свой равновесный параметр, т. е. эпитаксии нет. Связь между металлической решеткой электролитического осадка и ионной или ковалентной решеткой подложки осуществляется только за счет второстепенных сил Ван-дер-Ваальса.  [c.343]

Кристаллическая решетка теллура построена из спиралевидных цепочек атомов, расположенных параллельно по отношению друг к другу вдоль оси С, по три атома в каждой элементарной ячейке. Связи между отдельными атомами в цепочках ковалентные, а между собой цепочки связаны как силами Ван-дер-Ваальса, так и силами металлического характера. С увеличением числа отрывающихся валентных электронов металлические связи усиливаются, а ковалентные ослабевают.  [c.30]


Смешанные решетки имеют, например, слюда и тальк внутри слоев действуют ковалентные связи, а между слоями — силы Ван-дер-Ваальса.  [c.173]

Ковалентная связь имеет то же происхождение, что и связь в гамополярных молекулах (Нг, СЬ, Ь,.- ), она обусловлена обменным электронным взаимодействием между атомами. В молекулярных кристаллах (Нг, СЬ, Ь,---) ковалентная связь локализована между ядрами в молекуле, молекулы удерживаются вместе слабыми силами Ван-дер-Ваальса. Однако в случае алмаза или графита несколько валентных электронов являются общими для атома и ряда его соседей, и поэтому невозможно выделить какую-либо группу атомов, которую можно рассматривать как химически насыщенную (рис. 2.7). С этой точки зрения кристалл алмаза представляет собой огромную молекулу.  [c.75]

При наличии в кристаллах связей разного типа могут образовываться устойчивые обособленные группировки атомов, которые и рассматриваются обычно в качестве основных структурных единиц кристалла. Такие кристаллы называют гетеродесмическими. Обычно связи внутри обособленных группировок носят ковалентный характер, между группировками действуют ван-дер-ваальсо-вы связи. Типичные примеры — многие органические соединения, а также структуры с интерметаллическими комплексами в неорганических кристаллах и т. д.  [c.161]

Ван-дер-ваальсовы силы слабые (меньше кулонов-ских), короткодействующие, центральные. Типичными представителями веществ являются кристаллы благородных газов и вследствие того, что силы связи малы, эти кристаллы существуют при очень низких температурах. Силы Ван-дер-Ваальса типичны для некоторых анизотропных кристаллов, образующихся из элементов IV—VII групп (см. рис. 3, б) по правилу 8—ЛА. В них между атомными слоями (рядами, молекулами) действуют силы Ван-дер-Ваальса, а между атомами внутри слоев (рядов, молекул) ковалентные связи.  [c.10]

По характеру сил связи твердые кристаллические тела можно условно разделить на следующие четыре группы ионные кристаллы (Na l, LiF, окислы и др.), в которых основным видом связи является иониая атомные кристаллы (алмаз, кремний, германий и многие химические соединения), в которых основные связи ковалентные металлические кристаллы. с характерной металлической связью молекулярные кристаллы, в которых связь осуществляется в основном силами Ван-дер-Ваальса. Рассмотрим кратко природу сил связи в этих кристаллах и их основные свойства.  [c.15]

Ковалентная связь возникает между атомами элементов групп IVB, VB, V1B и VIIB системы Д. И. Менделеева (рис. 1.13). Все они кристаллизуются по правилу 8 — N каждый атом окружен 8 — N ближайшими соседями, где М — номер группы, к которой принадлежит элемент. Объясняется это тем, что в валентной оболочке элемента группы N имеется 8 — N орбиталей, на которые могут быть приняты электроны соседних атомов. Так, алмаз, кремний германий, серое олово являются элементами IV группы. Поэтому они имеют тетраэдрическую решетку, в которой каждый атом окружен четырьмя ближайшими соседями, как показано на рис. 1.13, а. Мышьяк, фосфор, висмут и сурьма принадлежат к V группе периодической системы. Эти элементы имеют слоистую решетку, причем в плоскости слоя каждый атом имеет три ближайших соседа (рис. 1.13, б) слои связаны друг с другом слабыми силами Ван-дер-Ваальса. У селена и теллура, принадлежащих к VI группе, атомы образуют длинные цепочки так, что каждый имеет два ближайших соседа (рис. 1.13, в) цепочки связаны между собой силами Ван-дерт Ваальса. Наконец, в решетке йода, принадлежащего к VII труп-  [c.19]

Гексагональная модификация. Теллур гексагональной модификации устойчив ниже температуры плавлеиия. В данной модификации атомы расположены спиральными цепями, каждый атом образует ковалентные связи с ближайшими соседями, а поэтому каждый атом имеет восемь валентных электронов. Эти цепи связаны с прилегающими цепями относительно слабыми силами Ван-дер-Ваальса. Ось с гексагонального кристалла теллура параллельна осям спиралей. Дополнительные детали структуры кристалла теллура описаны в книге Ханнея Полупроводники 16].  [c.748]

Общей чертой полимеров яв.ляется ковалентная связь. На одном конце спектра материалов этого класса находятся линейные полимеры, в которых атомы (часто атомы углерода) соединены в очень длинные цепочки (макромолеку лы) сильными ковалентными связями. Связь между цепочка.ми обусловлена слабыми силами Ван-дер-Ваальса. Эти вещества никогда не бывают полностью кристаллическими. Они - основа древесины и термопластиков. На друго.м конце спектра этих материалов располагаются полимеры с замкнутой пространственной структурой,  [c.47]

Дальнейшие расчеты теоретической хрупкой прочности были проведены с учетом особенностей сил связи в различных кристаллических структурах, для чего использовались различные потенциалы типа Морзе (ковалентные кристаллы), Борна с учетом сил Ван-дер-Ваальса (ионные кристаллы), Ленарда— Джонса и другие (см. гл. I). Эти уточненные расчеты Теоретической хрупкой прочности показывают, что для неметаллических кристаллов оценка Орована завышена примерно вдвое. Однако для металлических кристаллов она остается лучшим приближением.  [c.280]

Согласно первой теореме подобия, процессы и явления в трех рассматриваемых категориях должны быть общими и пропорциональными [65]. В нашем случае соблюдается подобие химических, физических, физико-химических и электрохимических процессов и явлений. Так, очевидно, что основой ПИНС, как и основой любых нефтепродуктов, является химическое строение веществ, стерические факторы, полярность и поляризуемость молекул, энергии основных химических связей (ковалентная, координационная, ионная связь) и молекулярные взаимодействия — электроно-донорно-акцепторные (эда-взаимодей-ствия), комплексы с переносом заряда (кпз), водородные связи, взаимодействия, обусловленные силами Ван-дер-Ваальса (индукционное, ориентационное, дисперсионное взаимодействие), комплексы свободных стабильных радикалов (кср), а сле-  [c.41]


Пе останавливаясь на особенностях природы сил взаимодействия, отметим слеяуюптие виды связи частиц в твердых телах связь Ван-дер-Ваальса, ионная связь, ковалентная связь, металлическая связь и водородная связь [37, 74]. Наиболее универсальной является связь Ван-дер-Ваальса. Она возникает во всех без исключения случаях. Вместе с тем это наиболее слабая связь с энергией порядка 10" Дж/моль, характерной для мало устойчивых и легко летучих структур с низкими точками плавления. Ионная связь является типичной химической связью, широко распространенной среди неорганических соединений. К таким соединениям относятся интерметаллические соединения, например, карбиды и нитриды, а также окислы металлов, сульфиды и другие полярные соединения [278. Энергия ионной связи составляет 10 Дж/моль, что характерно для соединений с высокой точкой плавления. В некоторых металлах и во многих интерметаллических соединениях встречается ковалентная связь с энергией 10 Дж/моль. Металлическая связь, возникаюш,ая  [c.17]

Для обоих кристаллов эти коэффициенты практически одинаковы, ио различаются перестановкой мест. Различие коэффици- еитов а, и ах обусловлено анизотропией связей направления прочных и слабых связей в этих кристаллах взаимно перпендикулярны. Сходство соответству-ующих коэффициентов в обоих веществах обусловлено одина- ковой природой прочных (ковалентные силы) и слабых (силы Ван-дер-Ваальса) связей. Переустановка коэффициентов вызвана тем, что главная ось в кри- сталле графита совпадает с направлением слабой связи, а в жристалле теллура — с направ- лением сильной связи. Отрицательные значения коэффициентов расширения вдоль сильных связей объясняются анизотропи->ей колебаний частиц. Амплитуды продольных колебаний вдоль слоев и цепочек меньше амплитуд поперечных колебаний. Тепловые волны изгиба приводят к сокращению продольных размеров слоев и цепочек. В кубическом кристалле алмаза, взятом для сравнения, тепловое расширение изотропно и мало, а = 0,6-10 град , что объясняется кубической симметрией и прочностью связей. Другие свойства алмаза и графита — двух модификаций углерода — также существенно различны. Алмаз — изолятор, прозрачен, Тверд графит—полупроводник, непрозрачен, легко распадает->ся на чешуйки при легком нажиме.  [c.86]

Все атомы, ионы и молекулы испытывают слабое взаимное притяжение друг к другу, которое обусловлено силами Вап-дер-Ваалъса, однако в большинстве кристаллов эти силы весьма малы по сравнению с другими более значительными силами, обусловленными ионной или ковалентной связью. Тем не менее силы Ван-дер-Ваальса играют важную роль при образовании структур инертных и двухатомных газов в твердом состоянии (где они оказываются единственными силами, удерживающими атомы или молекулы в кристалле), а также в некоторых анизотропных кристаллах, например у селена (фиг. 6, б), где с их помощью осуществляется связь в определенных кристаллографических направлениях. Источником сил Ван-дер-Ваальса является поляризационный эффект, вызываемый влиянием поля электронов, движущихся вокруг ядра данного атома, на движение электронов вокруг ядра соседнего атома. В анизотропной молекуле этот эффект может привести к возникновению постоянного дипольного момента, однако в симметричных конфигурациях (например, в кристаллах твердых инертных газов) возникновения результирующего дипольного момента не наблюдается, поскольку поляризационные эффекты синхронизируются с непрерывно изменяющимися полями в соседних атомах. Вклад щл Ван-дер-Ваальса в энергию решетки и определяется выражением  [c.24]

Аналогичным образом атомы элементов подгруппы VB образуют двуслойные пакеты, в которых каждый атом связан с тремя ближайшими соседями ковалентными связями. При объединении этих пакетов получается трехмерная структура, например ромбоэдрическая типа Л7, которая характерна для мышьяка, сурьмы и висмута (фиг. 6, е). Цепи в структуре типа AgH пакеты в структуре типа А-, связаны друг с другом относительно слабыми связями Ван-дер-Ваальса, на которые накладывается в незначительной степени металлическая связь. В результате получаются структуры, обладаюш ие значительной анизотропией физических свойств. Сложный характер расположения атомов в этих структурах затрудняет процессы пластической деформации (такие, как сдвиг, двойникование и т. п., см. гл. XIII и XVI и обусловливает значительно большую хрупкость элементов подгрупп VB и VIВ по сравнению с элементами, обладающими типичными металлическими структурами.  [c.35]

Наименьшим по величине энергии (примерно 1—2 ккал1моль) фактором, обуславливающим укладку молекул, является ван-дер-ваальсовское взаимодействие, описываемое межмолекулярными радиусами (см. табл. 1). Схема кривых потенциальной энергии взаимодействия для трех основных типов связей показана на рис.18 [7]. Эти кривые характеризуют как энергию связи (глубина потенциальной ямы), так и их жесткость , т. е. возможность укорочения или удлинения (ширина ямы, ее форма). Наиболее жесткой, нерастягивающейся является ковалентная связь кривая 1 — острая. Водородная связь и еще в большей степени ван-дер-ваальсов-ская связь мягки в сторону удлинения, но достаточно жестки по отношению к уменьшению расстояний.  [c.46]

Интересно отметить, что все упомянутые здесь органические соединения с длинными углеводородными цепями имеют как полярные, так и неполярные концы. Полярный конец молекулы ингибитора принимает участие в адсорбционном процессе. Будет ли начальная адсорбция действительно хемосорбцией или физической адсорбцией, обусловленной силами Ван-дер-Ваальса, с последующей хемосорбцией, — еще окончательно не установлено. Брестон [110] утверждает, что, по-видимому, оба процесса совершаются одновременно хемосорбция происходит на активных участках, а оставшаяся часть поверхности покрывается ингибитором за счет слабых физических сил. Однако при этом через короткий промежуток времени должна возникнуть сильная ковалентная связь между полярной группой ингибитора и поверхностью металла.  [c.212]

Кристаллы, образованные молекулами, которые связаны между собой силами Ван-дер-Ваальса, называются молекулярными. Внутри молекул атомы соединены существенно более прочными ковалентными связями. Фазовые переходы молекулярных кристаллов - плавление, возгонка, полиморфные переходы - происходят, как правило, без разрушения отдельных молекул. Молекулярные кристаллы являются частным случаем ван-дер-ваальсовых кристаллов, к которым относятся также цепочечные и слоистые кристаллы, где посредством сил Ван-дер-Ваальса соединены бесконечные цепи (например, органические полимеры) или слои (например, графит).  [c.28]

Из неметаллических материалов высокой электропроводностью обладает графит. Это объясняется заменой у четырехвалентного углерода ковалентных связей вдоль вертикальной оси в гексагональной структуре (рис. 14.1) на ван-дер-ваальсовы силы, в результате чего появляются свободные носители электрического тока. Такое различие химической связи в структуре графита (в базисных плоскостях (0001) (см. рис. 1.9, и) - прочные ковалентные связи, а между плоскостями - связи на основе сил Ван-дер-Ваальса) приводит к существенной анизотропии свойств (табл. 14.4).  [c.628]

Полимеры состоят из гигантских молекул, образованных в результате объединения небольщих групп атомов, чаще всего атомов углерода и водорода (ковалентная связь). Ме-жду макромолекулами действуют силы Ван-дер-Ваальса. Полиэтилен, поливинилхлорид, полифторэтилен, полистирол и другие подобные пластмассы относятся к термопластичным при повыщении температуры они постепенно размягчаются, т.е. ведут себя как аморфные вещества. Вместе с тем при нормальной температуре (+20 °С) у некоторых полимеров имеется частично кристаллическая структура в виде небольших областей, в которых молекулы расположены в определенном порядке (чаще всего так называемые сферолиты). Примером почти полностью кристаллического полимера является фторопласт (политетрафторэтилен), обладающий уникальными антифрикционными свойствами. К линейным полимерам относится также древесина (целлюлоза), которая после специальной обработки используется в узлах трения.  [c.70]


Тип и прочность связи между атомами. Между атомами может быть четыре типа связей (рис. 1.1) полярная (молекулярная, Ван-дер-Ваальса), ионная (гетерополярная), ковалентная (гомео-полярная) и металлическая. При полярной связи не происходит электронного обмена между атомами и не требуется отрыва электрона от атома. В этом типе связи происходит поляризация зарядов — смещение электронов в одном направлении, что создает предпосылки для электромагнитного взаимодействия между двумя поляризованными атомами. Такая связь энергетически непрочна (показатель прочности 0,1 эВ). При ионной связи происходит электронный обмен — электрон переходит с одного атома на другой, при этом первый становится электроположительным, а второй электроотрицательным. Взаимодействие различно заряженных ионов определяет связь в кристаллах (8,5 эВ). При ковалентной связи также имеет место переход электронов с внешних обо-8  [c.8]

В ковалентных и молекулярных кристаллах основными структурными единицами являются нейтральные объекты — атсмы и молекулы, между которыми действуют силы малого радиуса — ковалентные или Ван-дер-Ваальса. При ковалентных силах энергия взаимодействия убывает с расстоянием экспоненциально. При силах Ван-дер-Ваальса — обратно пропорционально шестой степени расстояния.  [c.33]

Рис. 3.1. Основные типы связей в кристаллах, а) Кристаллический аргон (ван-дер-ваальсова связь). Нейтральные атомы аргона образуют кристалл за счет слабых сил Ван-дер-Ваальса, действующих между ними и возникающих в результате флуктуаций в распределении заряда атомов, б) Хлористый натрий (ионная связь). Атомы щелочного металла 1 а отдали свои валентные электроны атомам галогена С1. Получившиеся при этом ионы образовали кристалл хлористого натрия за счет сил электростатического притяжения между положительными н отрицательными ионами, в) Натрий (металлическая связь). Валентные электроны атомов щелочного металла Ыа покидают свои атомы и образуют электронную жидкость , в которую погружены положительные ионы, г) Алмаз (ковалентная связь). Нейтральные атомы углерода образуют кристалл алмаза за счет перекрытия их электронных оболочек. Рис. 3.1. Основные <a href="/info/331838">типы связей</a> в кристаллах, а) Кристаллический аргон (ван-дер-<a href="/info/359035">ваальсова связь</a>). Нейтральные атомы аргона образуют кристалл за счет слабых сил Ван-дер-Ваальса, действующих между ними и возникающих в результате флуктуаций в <a href="/info/246712">распределении заряда</a> атомов, б) <a href="/info/18151">Хлористый натрий</a> (<a href="/info/1537">ионная связь</a>). Атомы <a href="/info/18454">щелочного металла</a> 1 а отдали свои <a href="/info/33334">валентные электроны</a> атомам галогена С1. Получившиеся при этом ионы образовали кристалл <a href="/info/18151">хлористого натрия</a> за счет сил электростатического притяжения между положительными н отрицательными ионами, в) Натрий (<a href="/info/7285">металлическая связь</a>). <a href="/info/33334">Валентные электроны</a> атомов <a href="/info/18454">щелочного металла</a> Ыа покидают свои атомы и образуют <a href="/info/357704">электронную жидкость</a> , в которую погружены положительные ионы, г) Алмаз (<a href="/info/16469">ковалентная связь</a>). Нейтральные атомы углерода образуют кристалл алмаза за счет перекрытия их электронных оболочек.
Делокализован 1ой связью обладают металлы. Мы рассмотрим ее в 6. Помимо данных трех основных типов химической связи —. металлической, ковалентно и ноннон — есть также другие, более слабые типы свяЗ 1 (связь ван дер Ваальса. между нейтральными молекулами или атомами инертного газа, водородная связь между атома.мп водорода в молекулярных кристаллах). Эти типы связи здесь рассматривать не будем.  [c.14]


Смотреть страницы где упоминается термин Ван-дер-Ваальса ковалентная : [c.9]    [c.47]    [c.52]    [c.58]    [c.113]    [c.34]    [c.20]   
Физическое металловедение Вып I (1967) -- [ c.22 , c.23 , c.27 , c.34 , c.48 , c.51 , c.52 , c.58 , c.265 ]



ПОИСК



Газ Ван-дер-Ваальса



© 2025 Mash-xxl.info Реклама на сайте