Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистическое распределение локально-равновесное

В соответствии с общей идеей сокращенного описания неравновесных систем, нормальным решением уравнения Больцмана (ЗА.З) можно назвать такое решение, которое в отдаленном прошлом совпадает с локально-равновесным максвелловским распределением (ЗА.19). Иными словами, нормальное решение уравнения Больцмана отбирается с помощью специального граничного условия точно так же, как неравновесный статистический оператор был найден в главе 2 с помощью граничных условий к уравнению Лиувилля. Продолжая дальше эту аналогию, введем в уравнение Больцмана бесконечно малый источник, отбирающий нормальное решение [27]  [c.236]


Пример статистического распределения, описывающего локально-равновесное состояние жидкости или газа, мы приводили в разделе 2.2.1. Статистическая теория нелинейных гидродинамических процессов будет излагаться во втором томе.  [c.390]

Если состояние сверхтекучей жидкости обладает вихревой структурой, то некоторые из выведенных в этом параграфе соотношений оказываются несправедливыми. Несмотря на то, что делались различные попытки сформулировать термодинамические соотношения и построить феноменологическое обобщение гидродинамики сверхтекучести при наличии квантованных вихревых линий [38], в настоящий момент мы не имеем удовлетворительного микроскопического подхода к этой проблеме. Трудности возникают даже при построении статистического распределения, описывающего локально-равновесное состояние с квантованными вихрями.  [c.207]

Излагаемые ниже соображения основаны на том факте, что гидродинамические переменные а (г) соответствуют полу макроскопическим величинам, поскольку обрезающее волновое число Ajq было выбрано таким образом, чтобы пространственная ячейка с размерами / I/Ajq содержала большое число частиц. Тогда каждую из таких ячеек можно рассматривать как малую, но макроскопическую подсистему, взаимодействующую с другими ячейками через свои границы. Согласно общему принципу термодинамической эквивалентности статистических ансамблей (см. раздел 1.3.10 первого тома), можно считать, что энтропия S a) микроканонического ансамбля, определяемого условиями а г) = ft (r), является таким же функционалом от а (г) , как и энтропия Si a) локально-равновесного большого канонического ансамбля от (fl (r)) , если соответствующее фазовое распределение Qi q,p a) удовлетворяет условиям  [c.229]

В некотором отношении энтропия (9.4.47) аналогична энтропии Гиббса в статистической механике. Иногда используются другие определения. Например, в [20] неравновесная энтропия вводится через локально-равновесное максвелловское распределение, зависящее от флуктуирующей макроскопической скорости. В разделе 9.4.6 будет показано, что можно определить термодинамическую энтропию турбулентного движения, основанную на квазиравновесном распределении для поля скоростей. Ясно, что различным определениям могут соответствовать различные свойства энтропии. Во всяком случае поведение энтропии в турбулентности является очень интересным вопросом, который требует дальнейших исследований.  [c.266]


Шуман [107], анализируя последовательность образования мартенситных фаз в марганцевых сплавах, построил качественную концентрационную зависимость энергии д. у., свидетельствующую о ее немонотонном ходе. Анализ результатов исследований [1, 4, 31, 39] показывает, что увеличение содержания марганца в аустените приводит к изменению количества д. у., находящемуся в строгом соответствии с количеством е-мартенсита, образующегося при охлаждении или деформации. Количественные измерения энергии д. у. на основании изучения тонкой структуры отдельных дефектов и их комплексов в сплавах системы Fe—Ni и Fe—Мп в зависимости от содержания углерода и температуры испытания были проведены в работах Ю. Н. Петрова [102, 108, 109], Так как энергия д. у. марганцовистого аустенита низка, проводили измерения на основании статистического анализа распределения по размерам тройных дислокационных узлов, как наиболее равновесной дислокационной конфигурации. Надежных измерений величины энергии д. у. по расщепленным дислокациям провести не удавалось из-за сильного влияния поверхностей фольги, локальных внутренних напряжений. на равновесное расстояние между частичными дислокациями.  [c.65]

Говорят, что элемент объема вещества ёУ находится в локальном термодинамическом равновесии при температуре Т, если заселенность энергетических уровней всех состояний частиц отвечает равновесной заселенности в соответствии с распределением статистической механики, описанным в гл. 5. В 6.7 рассмотрен пример учета только поступательных степеней свободы. По мере изменения плотностей вещества и энергии в объеме заселенность энергетических уровней стремится к равновесному состоянию для температуры, соответствующей мгновенным значениям плотностей энергии и вещества. О том, насколько быстро определенное состояние заселенности приходит к равновесию, можно судить, лишь сопоставляя скорости протекания процессов с участием рассматриваемых частиц и скорости изменения плотностей энергии и вещества.  [c.357]

Примечание. Пригожиным были проведены [4] детальные вычисления удельной энтропии на основе кинетической теории газов по методу Эпскога — Чэпмена и установлено соответствие результатов вычислений термодинамической теории, т. е. соотношению Гиббса (1.1а), если в разложении р ро + Р1 + Р2 + функции распределения р для неравновесного статистического ансамбля удерживать только первое слагаемое рх после равновесного Ро- При удержании второго слагаемого рг удельная энтропия оказывается явной функцией градиентов, действующих в неравновесной системе. Ограничение р ро - -р1, как известно, означает малость отклонения системы от состояния равновесия и требует малости средней длины свободного пробега атомов в сравнении с размерами предоставленной системе области, малости изменений температуры, состава, скорости на длине свободного пробега и т.д. Наличие этих требований служит, с одной стороны, обоснованием введения в теорию понятий локальных величин (удельной энтропии, температуры и т. д.), а с другой  [c.30]

Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]



Смотреть страницы где упоминается термин Статистическое распределение локально-равновесное : [c.290]    [c.159]    [c.175]    [c.7]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.89 ]



ПОИСК



Г локальный

К локальности

Локально равновесное распределение

Локально-равновесное распределени

Равновесное статистическое распределение

Статистическое распределение



© 2025 Mash-xxl.info Реклама на сайте