Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адгезия число

Классификация адгезии. Адгезию классифицируют по различным признакам, которыми могут быть свойства среды силы, определяющие адгезию число прилипших частиц изменение адгезии в процессе отрыва направление отрывающей силы.  [c.10]

Адгезия, число кручений 27 47 42  [c.59]

К числу недостатков фторопласта-4 следует отнести низкую его адгезию к металлам и другим материалам. По этой причине встречаются затруднения при нанесении фторопласта-4 в виде защитного покрытия. Нерастворимость фторопласта-4 не позволяет также наносить его на поверхности в виде защитного слоя из растворов.  [c.431]


Эпоксидные смолы также устойчивы в щелочах и щелочных средах. Их отличительным свойством является хорошая адгезия к металлической поверхности — из-за наличия в молекуле большого числа полярных групп. Эти смолы служат основой пластичных смесей — компаундов, которые при добавлении соответствующего катализатора быстро затвердевают по месту нанесения. Они удобны, например, при временной заделке сквозных дефектов в трубопроводах из стали и других металлов.  [c.248]

Исследования показывают, что на технических поверхностях нагрева число центров парообразования z зависит от материала, строения и микрошероховатости поверхности, наличия неоднородности состава поверхности и адсорбированного поверхностью газа (воздуха). Заметное влия 1ие оказывают различные налеты, окисные пленки, а также любые другие включения, приводящие к понижению работы адгезии. Под работой адгезии понимают работу, которую необходимо затратить для отрыва жидкости от твердой поверхности на единице площади. Эта величина характеризует меру молекулярного сцепления жидкости с поверхностью и связана с явлением смачивания.  [c.109]

Зависимость коэффициента адгезии от числа циклов контактирование—разъединение при последовательных испытаниях для исследуемых пар материалов оказалась такой же, как в работах [3, 41.  [c.190]

Известно, например, что недогрев полимера приводит к сверх-молекулярным образованиям, отрицательно сказывающимся на формировании адгезионного контакта (т. е. уменьшается число функциональных групп, обеспечивающих молекулярные связи в зоне контакта). Добавление в полимер различных пластификаторов приводит к разрушению этих образований и способствует лучшей адгезии. Решающее значение на величину адгезионной прочности феноло-формальдегидных смол к поверхности твердых тел имеют гидроксильные группы [2].  [c.127]

Более сложными являются условия диффузии большого числа компонентов или условия образования продуктов со слабой адгезией. При этом происходит временное или периодическое обнажение поверхности металлов. Движение реагирующего компонента часто является определяющим и тогда, когда не образуется слой твердых продуктов коррозии. Примером служит растворение меди в неокисляющих кислотах Си-1-2Н+- -1/2 02 u2+- -H20,. где определяющим является движение кислорода через раствор-кислоты к поверхности меди.  [c.14]

Наиболее удачное сочетание атмосферостойкости, химической стойкости и водостойкости с растворимостью и высокой прочностью достигается при сополимеризации 85—87% винилхлорида с 13— 15% винилацетата. К их числу относится выпускаемый отечественной промышленностью сополимер А-15. Для улучшения адгезии покрытий и увеличения содержания сухого остатка при рабочей вязкости в состав лакокрасочных материалов на основе этих сополимеров добавляют алкидную или алкидно-акриловую смолу.  [c.53]


Важное значение с точки зрения коррозионной ползучести и разрушения материалов имеет вопрос об адгезии оксида к металл лу, так как окалина, отслаивающаяся от подложки, конечно же, не оказывает влияния на механические свойства материала. Например, высокотемпературная коррозия, как уже обсуждалось, обязательно подразумевает ухудшение адгезии или даже полное отделение окалины. Отслаивание оксида также может быть вызвано рассмотренными выше температурными напряжениями. Различные механизмы отслаивания оксидов, в том числе связанные с уменьшением пластичности, ползучестью и усталостью материала, рассмотрены в обзоре [135]. Согласно экспериментальным данным, отслаивание оксида может протекать легко. Например, на сплаве Ni—20 Сг—4 А1 отделение оксида наблюдалось после одного цикла изменения температуры от 300 °С до комнатной [135]. Исключение могут составлять сплавы, содержащие легирующие добавки РЗЭ, улучшающие адгезию оксида к металлу [111].  [c.31]

Значительное влияние могут оказывать и методы получения композитов, рассмотренные в гл. 1. От этих методов зависят размеры и распределение пустот и включений, образующихся в процессе изготовления композита, степень неравномерности распределения волокна, состояние адгезии на поверхностях раздела, остаточные напряжения и др. Таким образом, можно видеть, что на поведение композита при разрушении влияет большое число факторов. Поэтому важно при исследовании особенностей разрушения выбрать соответствующую модель композита, которую можно было бы исследовать, или же, используя микромеханику разрушений и вероятностные методы, получить требуемые характеристики.  [c.108]

Система нихром—золото сохраняет механическую стабильность и хорошую адгезию, в том числе и при высоких (до 250 °С) температурах. Переходное сопротивление этой системы со вре-  [c.448]

Адгезия. Свойство лакокрасочной пленки прочно сцепляться с укрываемой ею поверхностью. Определяется по ТУ МХП 4202—54, СМИ—8 числом прочно сцепленных и отслоившихся квадратиков под влиянием прикосновения руки или острия ножа после нанесения сетки надрезов (шесть вдоль и шесть поперек) на лакокрасочном покрытии со стороной квадратиков 0,5 1,0 или 2,0 мм.  [c.188]

Таким образом, к проблеме изучения трения, адгезионного взаимодействия и изнашивания при высоких температурах относятся разработка испытательной аппаратуры и методов исследования создание новых материалов и покрытий для работы при высоких температурах исследование трения и адгезии материалов в подвижных и неподвижных разъемных сопряжениях (в том числе и применительно к сопряжению обрабатываемый материал — инструмент при обработке давлением и резанием) нахождение путей управления адгезией, или схватыванием, и трением применительно к технологическим процессам твердофазного соединения изыскание способов уменьшения трения, адгезионного взаимодействия и изнашивания.  [c.4]

Разделитель СКТ пульверизатором наносится тонким слоем на обезжиренную подогретую модель и подвергается сушке. Количество остатка при сжигании органического вещества характеризуется коксовым числом. Наименьшее коксовое число имеет каучук типа СКТ-Р, образующийся при длительной работе. Он легко удаляется, так как эластичная пленка состава СКТ обладает малой адгезией к металлу.  [c.144]

Свойства твердых тел, в том числе и теплофизические, как известно, в значительной степени зависят от совершенства (однородности) их микроструктуры. Клеевые же прослойки соединений на клеях как гетерогенные системы вследствие многообразия свойств компонентов и фаз раздела имеют неоднородные структуры. Неоднородность структур клеевых прослоек касается не только композиционного состава. Возникающие в процессе структурообразования прослойки усадочные и температурные напряжения концентрируются преимущественно на границах раздела фаз клей (адгезив) —склеиваемая поверхность (субстрат) и связующее — наполнитель, создавая сложное внутреннее силовое поле. Вследствие неоднородности структуры и наличия концентраций напряжений в клеевой прослойке приложенное однородное внешнее поле температур вызовет сложное внутреннее температурное поле. В свою очередь внутреннее силовое поле прослойки динамически неравновесно. Обычно как при склеивании, так и в процессе эксплуатации в клеевых прослойках протекают релаксационные процессы, изменяющие концентрации внутренних напряжений (Л. 4]. Вследствие этого внутреннее температурное поле клеевой прослойки постоянно находится в термодинамически неравновесном состоянии и структура его является достаточно сложной. Остановимся на основных факторах, оказывающих влияние на формирование термического сопротивления клеевых прослоек.  [c.14]


Эффективно повысить свинчиваемость соединений из титановых сплавов можно при совместном использовании мягких покрытий и СМ. Так, медные покрытия хорошо (табл. 11.5) адсорбируют поверхностно-активные компоненты СМ, образуя на поверхностях витков резьбы тонкий адсорбционно-пластифицированный слой, повышающий адгезию смазочной пленки и обеспечивающий ее высокую прочность [10]. Кроме того, с увеличением числа затяжек происходит приработка поверхностей трения и уменьшаются значения /т  [c.337]

Чтобы сопоставить работ адгезии с характером сил взаимодействия между жидкостью и твердым телом, рассмотрим приближенную схему. Пусть каждая частица твердого тела (молекула, ион, атом) взаимодействует только с одной частицей жидкой фазы. Тогда число связей между частицами твердой и жидкой фаз на единице смоченной площади равно числу частиц на единице площади твердого тела ris = /q q - площадь, приходящаяся на одну частицу). Энергия одной связи и 1 (твердое-жидкое si)  [c.96]

Диаметр медной ность, число возврат- Пробивное напря- Адгезия, число  [c.281]

Пленкообразующее вещество — это основной компонент, обладающий хорошей адгезией (сцеплением) с окрашйва,емой поверхностью и являющийся связующим для порошкообразных компонентов (пигментов и наполнителей). Пленкообразующие вещества должны быть стойкими и прочными в условиях эксплуатации, химически нейтральными по своей природе они относятся к веществам органического происхождения. Пленкообразующие в нормальных условиях являются твердыми веществами или вязкими жидкостями, которые необходимо предварительно растворить до определенной вязкости. В машиностроении применяют лакокрасочные материалы на основе водонерастворимых пленкообразующих они не вызывают коррозии металлов и дают более качественные покрытия. К их числу относятся растительные масла, смолы, эфиры целлюлозы, жидкое стекло и др.  [c.397]

Другим примером процесса агломерации является адгезия твердых частиц на твердой поверхности. Показано [1291, что на адгезию влияют такие факторы, как силы Лондона — Ван-дер-Ваальса, влажность, качество поверхности, изменение проходного сечения канала, время контакта, статическое электричество, вязкие свойства покрытия, температура и т. д. Многими авторами, в том числе Бредли [68, 691, рассматриваются силы Лондона — Ван-дер-Ваальса между частицами, а также между частицей и поверхностью. Влияние влажности изучалось на примере небольшого содержания жидкости между поверхностями [661. Влияние п.лощади контакта, размеров и формы частиц исследовалось в работе [4261. Время, требуемое для полной адгезии, определялось в работе [661. Визуально нетрудно убедиться в том, что адгезия и силы Лондона — Ван-дер-Ваальса имеют электрическую природу. Этот вопрос будет рассмотрен в гл. 10.  [c.267]

Авогадро число 53 Адгезия 15, 16, 17 Адиабатическая граница 148, 183 Айртон уравнение 94 Активация механическая 13  [c.552]

Отношение числа граммолекул ЗЮг к числу граммолекул щелочных окислов, умноженное на резразмерный коэффициент 1,5, учитывающий молекулярный вес, норнт название модуля жидкого стекла и характеризует данный конкретный состав. В зависимости от величины модуля жидкие стекла делятся на низкомодульные (до Л1 1 = 3,2) и высокомодульные (Л1д = 3,4-ь5). Лучшей адгезией к ме-та,ялу обладают низкомодульные жидкие стекла (о свойствах и характеристиках жидких стекол см. [49]).  [c.91]

Адгезия полимерных материалов к металлам определяется интенсивностью молекулярного и химического взаимодействия на поверхности раздела. XoponrvTO адгезию проявляют поэтому полярные полимеры с большим числом химически активных функциональных групп в макромолекулах.  [c.54]

Диапазон измерений прибором 636 от 10 до 1000 мкм, а прибором 637 от 1 до 100 мкм Принцип действия основан на получении и индикации воздушного пробоя между щупом прибора, на который подается ток высокого напряжения, и поверхностью изделия в месте нарушения сплошности покрытия. Момент пробоя определяют по вспышке лампы в корпусе прибора. Диапазон измерения сплошности полимерных покрытий толщиной от 60 до 600 мкм На покрытии лезвием делают не менее пяти параллельных надрезов до подложки по шаблону или линейке на расстоянии 1 или 2 мм друг от друга и столько же надрезов, перпендикулярных первым. После нанесения решеточного надреза поверхность покрытия очищают кистью и по числу отслоившихся квадратов оценивают адгезию покрытия по четырехбалльной шкале По ГОСТ 10086—77 различают две стадии высыхания покрытия 1) от пыли , т. е. время, в течение которого на подложке образуется тончайшая поверхностная пленка 2) практическое высыхание, когда пленка утрачивает липкость и окрашенное изделие может подвергаться дальнейшим операциям  [c.155]

Теплоотдача при капельной конденсации пара. Если конденсат не смачивает поверхность охлаждения, то конденсация пара приобретает капельный характер. На поверхности образуются и растут отдельные капли конденсата. Скоростная киносъемка показывает, что рост возникающих капелек в начальный период идет с очень высокой скоростью. Затем по мере увеличения размера капель скорость их роста постепенно снижается. При этом одновременно наблюдается непрерывно идущий процесс взаимного слияния капель. В итоге, когда отдельные капли достигают размера примерно одного или нескольких миллиметров, они скатываются с поверхности под влиянием силы тяжести. Общая плотность капель на поверхности конденсации увеличивается по мере возрастания температурного напора At = Наблюдения показывают, что при малых капельки конденсата зарождаются в основном на разного рода микроуглублениях и других элементах неоднородности поверхности (причем в первую очередь на тех, для которых локальные условия смачивания и работа адгезии имеют повышенное значение). При увеличении на поверхности конденсации может возникать, кроме того, очень тонкая (около 1 мкм и менее) неустойчивая жидкостная пленка. Она непрерывно разрывается, стягиваясь во все новые капельки, и восстанавливается вновь. При этом число капель на поверхности резко увеличивается.  [c.158]


По агрегатному состоянию ПВАД — жидкость белого цвета, очень похожая на сметану. Когда такую жидкость разливают тонким слоем по поверхности, вода из нее испаряется, и на подложке остается полимерная плрнка, обладающая высокой адгезией к различным основаниям, в том числе и к металлам. Дисперсия легко взармодейст-дует с ортофосфорной кислотой, различными солями, поверхностно-активными веществами, ингибиторами, что дает возможность получения различных модификаций грунтовки,  [c.27]

Такими соединениями являются хлориды АБДМ и ОБДМ аммония, катапин Б-300, катамин АБ. Работы многих исследователей, в том числе и наши, позволили установить, что введение этих веществ в количестве 0,5—1% от массы пленкообразователя в лакокрасочный материал обеспечивает адгезию его к влажной поверхности. Однако эти поверхностно-активные вещества пока еще очень дефицитны.  [c.67]

Существенным недостатком термического метода является сложность получения пленок строго стехиометрического состава из сплавов и сложных химических соединений, а также низкая адгезия, сильно зависящая от состояния поверхности подложки и методов се очистки, от условий нанесения пленки и т. д. Из широко используемых в микроэлектронике химических соединений лишь относительно немногие испаряются без диссоциации (например, ЗЮг, SnO, В2О3 и др.). При испарении же таких соединний, как А" — в газовую фазу поступают частицы диссоциировавших молекул. На подложке они вновь могут объединяться в молекулы, но пленка получается обычно нестехиометрического состава. Большое число соединений, например А —В , и многие сплавы состоят из компонентов, обладающих резко различной летучестью, вследствие чего при испарении в газовую фазу поступают преимущественно более летучие компоненты. Это приводит, как правило, к сильному нарушению стехиометрии состава выращенных пленок. Для преодоления этой трудности пользуются специальными методами испарения, такими как испарение из двух источников, методом вспышки, при котором испаряются малые навески составляющих элементов напыляемой пленки, и др. Для получения пленок окислов применяется так называемое реактивное напыление, при котором в камере поддерживается относительно высокое давление кислорода (от 10 до 1 Па), обеспечивающее полное окисление пленок на поверхности подложки.  [c.62]

Таким образом, получить в обычных условиях высб кую адгезию между твердыми телами при простом их соприкосновении невозможно. Для достижения высокой адгезии необходимо, во-первых, сделать площадь фактического контакта близкой к его геометрической площади, во-вторых, удалить адсорбированные слои, в том числе и окисные пленки, с тем чтобы в контакт входили чистые поверхности. Эти условия могут быть реализованы двумя способами.  [c.79]

Как видно из рис, 6, 9, при введении в кремний (германий) золота поверхностное (граница жидкий сплав — газ) и межфазное (граница жидкий сплав — твердый кристалл) натяжения меняются незначительно (слабое увеличение натяжения), т. е. золото не адсорбируется на обеих межфазных границах, в то время как германий или кремний, добавленные к золоту, резко уменьшают поверхностное и увеличивают межфазное натяжение. Такой ход кривых можно объяснить следующим образом. Обе границы являются местом, где атомы жидкой фазы имеют недостаток соседей по сравнению с объемом твердой и жидкой фаз. Это положение, очевидное для границы жидкость — газ, нуждается в обосновании для границы кристалл — собственный расплав. Так как смачиваемость чистой твердой фазы собственным расплавом неполная (0si si = = 14° 0oe -Ge = 15° 0aut-au = 7°), работа адгезии жидкой фазы к твердой фазе того же вещества меньше работы когезии в жидкости (и в твердой фазе), что, по-видимому, нельзя объяснить иначе, как наличием некоторой дополнительной разупорядоченности структуры на границе раздела (по сравнению с объемом жидкой фазы). Таким образом, на межфазной границе кристалла со своим расплавом среднее координационное число должно быть меньше, чем в жидкой фазе. Атомы поверхностно-активного компонента должны адсорбироваться на обеих границах (на границе раздела с газом адсорбция должна быть, очевидно, выше), изменяя межфазное натяжение.  [c.12]

Большая адгезия (обусловленная в том числе высокой степенью заполнения поверхности металла функциональными группами макромолекул) препятствует накоп-  [c.94]

Вследствие хорошей смачиваемости фосфатированных металлов жидкими лакокрасочными материалами и их развитой поверхности достигается высокая адгезия покрытий, в том числе и тех, которые в обычных условиях плохо адгезируют. Фосфатные покрытия в зависимости от состава имеют термостойкость от 150 до 220 °С обладают хорошими диэлектрическими свойствами цвет покрытий — от светло- до темно-серого.  [c.149]

Пропитка. Наиболее распространенным способом увеличения плотности графита, а следовательно, улучшения его физических свойств, в том числе прочностных характеристик, является пропитка (импрегнирование) полуфабриката (заготовок материала после обжига) каменноугольным пеком с последующей термообработкой — повторным обжигом и графитацией. Наряду с этим способом графит уплотняют пропиткой фенол-формальдегидными смола ми, фуриловым спиртом с последующим обжигом. Пропитывающие вещества должны обладать 1) высокой химической стойкостью, приближающейся к стойкости графита 2) хорошей адгезией к графиту и способностью обеспечивать низкую проницаемость пропитанного графита 3) подвижностью и легкостью проникновения в мелкие поры графита 4) максимальным увеличением механической прочности графита. Независимо от вида пропитывающих веществ технология и оборудование, применяемые для пропитывания углеграфитовых материалов, во многом схожи.  [c.24]

Другое конструктивное решение основано на использовании резины, нестойкой к действию химических агентов, покрытой пленкой полимерного материала с высокой химической стойкостью. Этот материал должен обладать соответствующей адгезией к резине, достаточной эластичностью и усталостной прочностью (пленочное покрытие из материала хрупкого или имеющего слишком низкую усталостную прочность растрескалось бы, обнажая резину). По данным фирмы Дюпон этим требованиям полностью удовлетворяет политетрафторэтилен (тефлон). В насосе, схематически изображенном на фиг. XVII. 18, из политетрафторэтилена изготовлены все детали, соприкасающиеся с жидкостью, за исключением диафрагмы / и тарелки 2, которые были изготовлены из химически нестойкой резины и покрыты политетрафторэтиленом. Число ходов штока диафрагмы в минуту равно 350, стрела прогиба диафрагмы равна 2 мм. Насос запроектирован для работы при температуре от —45 до +150° С, но теплостойкость политетрафторэтилена позволяет значительно расширить этот интервал.  [c.364]

В табл. 11.4 приведены результаты исследования свинчива-емости соединений из титановых сплавов [10]. Установлено, что защитные покрытия кадмием, оловом и особенно серебром позволяют снизить коэффициенты трения в резьбе. С увеличением числа затяжек антифрикционные свойства таких соединений ухудшаются из-за низкой адгезии покрытий к основному материалу болта и гайки (титановому сплаву). Более эффективным оказывается применение в сочетании с титановым болтом стальной гайки, например, из сталей ЗОХГСА, 12Х18Н10Т и др., покрытой кадмием или оловом, так как благодаря более высокой адгезии покрытия к материалу гаек соединения можно свинчивать до 50 раз.  [c.337]


Метод решетчатых надрезов. По существующему стандарту (ГОСТ 15140-78. Материалы лакокрасочные. Методы определения адгезии) адгезию по методу решетчатых надрезов определяют визуально и оценивают по четырехбалльной системе или по числу квадратов пленки, отслоившихся от подложки. Решетчатые надрезы наносят с помощью простейшего устройства, рабочей частью которого являются лезвия (рис. 43). Расстояние между резцом-лезвием и рабочим резцом составляет 2, между рабочими резцами —  [c.71]

Клеи иа основе эпоксидных смол являются в настоящее время наиболее распространенными клеями высокой прочности и технологичности. Они характеризуются широкой универсальностью применения, так как обеспечивают хорошую адгезию к большинству металлических и неметаллических материалов, применяемых в практических условиях. Несмотря на большое разнообразие рецептурнйх вариантов, эпоксидные клеи состоят из ограниченного числа исходных компонентов, сводимых к четырем основным группам веществ по функциональному назначению  [c.132]

Адгезия на границе раздела углеродное волокно - полимерная матрица определяется следующими факторами 1) механическими связями вследствие проникновения полимера в шероховатости поверхности волокон 2) химическими связями между поверхностью углеродных волокон и полимерной матрицей 3) физическими связями (обусловленными силами Ван-дер-Ваальса). Основными являются фжторы 1 и 2. Образование химических связей в системе углеродное волокно — полимерная матрица определяется химически активными функциональными группами на поверхности углеродных волокон. Эти функциональные группы связываются с атомами углерода соседних ароматических фрагментов. По мере увеличения числа таких атомов углерода усиливается химическая связь между углеродным волокном и полимерной матрицей. В реальном случае при обработке поверхности возрастает число кислотных функциональных групп и соответственно повышается прочность углепластика при межслоевом сдвиге (рис. 2.7) [15]. При использовании высокомодульных углеродных волокон адгезия на границе раздела волокно — полимер определяется преимущественно механическими связями вследствие шероховатости поверхности углеродных волокон этого типа [16].  [c.37]


Смотреть страницы где упоминается термин Адгезия число : [c.156]    [c.225]    [c.165]    [c.147]    [c.332]    [c.53]    [c.171]    [c.15]    [c.220]    [c.72]   
Адгезия пыли и порошков 1967 (1967) -- [ c.13 , c.95 , c.99 , c.155 , c.190 , c.240 ]

Адгезия пыли и порошков 1976 (1976) -- [ c.14 , c.18 , c.67 , c.257 , c.260 ]



ПОИСК



Адгезивы

Адгезия

Определение сил адгезии путем отрыва большого числа частиц

Оценка величины адгезии. Число адгезии



© 2025 Mash-xxl.info Реклама на сайте