Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сосуд Напряженное состояние

В ряде работ (например, /60/) для оценки свойств сварных соединений в условиях двухосного нагружения использовалось сравнение результатов испытаний образцов на гидростатическое выпучивание и сосудов на внутреннее давление. При этом отмечалось, что даже при подобии напряженного состояния в рассматриваемых объектах наблюда-  [c.82]

Все факторы, связанные с безмоментным напряженным состоянием стенок сосуда, отмечаются верхним индексом О .  [c.310]


Так как в любой точке тонкостенного сосуда имеет место сложное напряженное состояние, для расчета на прочность в зависимости от материала следует пользоваться соответствующей гипотезой прочности  [c.70]

Этот вопрос представляет значительный практический интерес для специальностей, связанных с химическим и пищевым машиностроением, но и для других машиностроительных специальностей также полезно кратко рассмотреть этот вопрос. Учащиеся получают первичное представление о расчете тонкостенных сосудов, т. е. получают возможность оценивать прочность не только бруса, но и других элементов конструкций. Познакомившись при изучении гипотез прочности с формулами для вычисления эквивалентных напряжений, хотя они ими (речь идет о формулах, в которых Оэкв выражено через главные напряжения) не пользовались, и, привыкнув к формулам для упрощенного плоского напряженного состояния, начинают считать их общими, применимыми во всех случаях. В тонкостенных сосудах они встречаются с другим случаем плоского напряженного состояния (с двухосным растяжением) и получают хорошую иллюстрацию к использованию общих формул  [c.218]

Для любой точки сосуда в сечении, проходящем через ось цилиндра (такое сечение называется меридиональным), не возникает касательных напряжений, что следует из симметрии сосуда и нагрузки. Иными словами, для любой точки указанное сечение совпадает с одной из главных площадок. Соответствующее нормальное напряжение обозначим (Уд и назовем окружным напряжением. Из закона парности касательных напряжений следует, что и в сечении, перпендикулярном первому (в поперечном сечении цилиндра), касательные напряжения также отсутствуют, т. е. для любой точки сосуда вторая главная площадка совпадает с его поперечным сечением. Напряжение, действующее в указанном сечении, обозначим и назовем меридиональным напряжением. Третья главная площадка перпендикулярна к двум первым, т. е. касательна к поверхности сосуда, и никаких напряжений на ней не возникает. Таким образом, в любой точке поверхности сосуда возникает двухосное напряженное состояние, при этом базы дат-  [c.53]

В условиях плоского напряженного состояния находится также материал сферических, конических и иных тонкостенных сосудов, пластин, оболочек и т. д.  [c.113]

Сопоставить значения октаэдрических касательных напряжений для следующих характерных случаев напряженного состояния простое растяжение, чистый сдвиг, растяжение тонкостенного сферического сосуда, находящегося под внутренним давлением, и растяжение тонкостенного цилиндрического сосуда при том же давлении.  [c.29]


Как будет вести себя проволока, если в сосуде создать давление р Каково будет ее напряженное состояние  [c.41]

Усиление эффекта снижения раскрытия берегов трещины может быть достигнуто путем расположения несквозных отверстий в сосуде под некоторым углом к плоскости трещины и сквозных отверстий в случае отсутствия требований к сохранению герметичности изделия с поверхностной трещиной (А. с. 1361856 СССР от 12.04.86. Опубл. Бюл. № 8, 1994). Располагаемые в последующем в них болты стягиваются между собой в пространстве так, что вокруг плоскости трещины возникает сложное напряженное состояние материала, для которого характерно резкое снижение темпа распространения трещины (рис. 8.38). С одной стороны, расположение болтов под углом к плоскости трещины служит препятствием для раскрытия ее берегов. С другой стороны, даже возникновение подрастания вершины трещины, например, вдоль малой оси полуэллипса будет происходить в течение длительного времени с низкой скоростью до тех пор, пока болт, проходящий через плоскость трещины, не будет разрушен.  [c.459]

Такой подход, вероятно, можно применять только для сосудов одной и той же геометрии, работающих в течение времени, не-большем времени эксперимента. Причина этого ограничения состоит в том, что предложенная теория пренебрегает действительным напряженным состоянием в сосуде и вкладом материала матрицы как средства передачи нагрузки.  [c.315]

Как сосуды внутреннего давления, так и сильфонные компенсаторы работают в условиях повторного приложения нагрузок, вызванных пульсациями давления у сосудов и наличием циклических перемещений у сильфонных компенсаторов. Для сильфонных компенсаторов нагружение характеризуется заданной амплитудой перемещений при обычно постоянном внутреннем давлении (влиянием эксплуатационных сбросов давления можно пренебречь ввиду сравнительно невысокой напряженности компенсаторов от давления) и условиями, близкими деформированию с заданной нагрузкой, для сосудов давления. Испытание этих контрастных по характеру нагружения натурных объектов позволяет рассмотреть особенности кинетики напряженного состояния и разрушения, в связи с типом внешних силовых факторов при малоцикловом нагружении.  [c.262]

Используя изложенные выше принципы анализа, определим долговечность сосудов высокого давления в условиях механохимической коррозии с учетом их конструктивных параметров и сложно-напряженного состояния [31 ]. Предположим, что в процессе работы сосуда поддерживается постоянное внутреннее давление среды, вызывающей равномерную коррозию. Зависимость скорости коррозии от напряжений рассчитываем по урав-  [c.39]

В данном случае при использовании в качестве образцов стержней малой толщины (8 мм) практически проявляются только продольные остаточные напряжения. У стенок большей толщины, характерных для сосудов высокого давления, напряженное состояние намного сложнее. Исследования распространения усталостных трещин при двухосном нагружении показали, что и в этих случаях сохраняется преимущественное влияние составляющей остаточных напряжений, перпендикулярной к плоскости трещины. Такой характер развития трещин не должен существенно отличаться от результатов, полученных на образцах.  [c.207]

Изгиб дисков, опертых по контуру (рис. 4.60) этот вид испытания создает напряженное состояние, более близкое к тому (двухосное растяжение), которое имеется в баллонах, сосудах, трубах, чем напряженное состояние при одноосном растяжении поэтому результаты такого испытания являются более надежными для суждения о поведении материала в указанных выше изделиях. Разрушение может быть либо пластичным — продавливание диска, либо хрупким — образование радиальных трещин.  [c.300]

Испытания многослойных рулонированных сосудов показали что эти конструкции характеризуются повышенной деформационной способностью, прочность их выше или равна прочности однослойных сосудов, разрушение имеет безосколочный вязкий характер, а напряженное состояние — ряд особенностей, описанных в работе [4]. Анализ величин разрушающих давлений показывает, что действительные запасы прочности, определенные как отношения давления разрушения к рабочему давлению, рассчитанному по действуюш ей технической документации, во всех случаях превышают требуемую величину [2, 6]. Средняя кольцевая пластическая деформация наружной поверхности сосудов при разрушении составляет 4—6 %.  [c.40]


В многослойной стенке кольцевые напряжения на внутренней поверхности всегда несколько больше вследствие наличия зазоров между слоями, а на наружной поверхности стенки — соответственно меньше, чем в аналогичном однослойном сосуде. Более существенные отклонения в напряженном состоянии в многослойной стенке наблюдаются в районе кольцевых сварочных швов. Вследствие более высокой податливости многослойной стенки относительно кольцевого шва возникают изгибающие напряжения, которые приводят к увеличению осевых напряжений в его корне. Результаты исследований более 30 многослойных сосудов диаметром от 500 до 1000 мм различных по конструкциям и материалам подтвердили решающее влияние контактной податливости и плотности прилегания слоев на напряженное состояние многослойных сосудов. Впервые с учетом контактной податливости были разработаны методики расчета напряжений в многослойной стенке [6], в том числе выполненной с натягом [11], и в зоне кольцевого шва, соединяющего две многослойные обечайки [12]. Поскольку при первичном нагружении внутренним давлением в некоторых слоях возникают пластические деформации, то нами были разработаны методики расчета напряженно-деформированного состояния многослойной стенки [13, 14] и кольцевого шва [15J при упругопластической работе.  [c.40]

Большое внимание уделялось изучению особенностей напряженного состояния многослойных сосудов рулонированной конструкции. Теоретические и экспериментальные исследования показали значительную роль сил трения в этой конструкции [20] и, как следствие, особую важность плотного прилегания слоев. При неплотной навивке наибольшую нагрузку воспринимают внутренние и внешние слои. Так, чем плотнее навивка слоя, тем ближе эпюра замеренных кольцевых напряжений к рассчитанной по формуле Ляме для однослойного цилиндра. Разработаны технологические приемы, повышающие плотность прилегания слоев обкаткой обечаек после навивки, попеременной укладки рулонной полосы (уменьшение влияния клиновидности полосы) и опрессовки сосудов повышенным гидравлическим давлением. Теоретические и экспериментальные исследования распределения напряжений по толщине рулонированных обечаек позволили сформулировать основные технические требования к плотности прилегания слоев. Был разработан и внедрен простой и эффективный метод оценки плотности навивки по усредненному межслойному зазору, определяемому объемом воздуха, занимающего межслойное пространство обечайки [21]. Экспериментальные исследования распределения по слоям напряжений послужили основой для разработки теоретического расчета напряженного состояния.  [c.41]

В данной статье излагаются результаты определения микрошероховатости и построения опорных кривых для трех марок рулонной стали, используемых для изготовления многослойных сосудов. Конечной целью этого комплекса работ по изучению контактного взаимодействия в слоях является разработка надежных методов расчета напряженного состояния подобных конструкций (таблица).  [c.132]

Особое внимание уделялось изучению особенностей напряженного состояния многослойных сосудов рулонированной конструкции. Теоретические и экспериментальные исследования выявили большую роль сил трения в этой конструкции [29] и, как следствие, особую важность плотного прилегания слоев. Был разработан простой и эффективный метод оценки плотности навивки, который внедрен в промышленном производстве сосудов [30]. Экспериментальные исследования распределения напряжений по слоям [31, 321 послужили основой для разработки теоретического расчета напряженно-  [c.264]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

В oTBef TBeHHHx высоконагруженных конструкциях во многих случаях запрещено располагать сварные швы друг от друга ближе, чем на одну-две толщины свариваемых листов [365]. Следовательно, при расчете напряженного состояния рассматриваемого узла должны приниматься во внимание только те соседние узлы, зона возмущения реактивных напряжений от которых больше одной-двух толщин свариваемого листа. Такое условие выполняется во всех случаях только для узлов, швы которых перерезают несущие элементы конструкции (например, оболочку сосуда давления или обшивку корпуса судна) и образуют в плоскости свариваемого листа замкнутый контур.  [c.297]

Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]


Второй вид оболочковых конструкций — сосуды, работающие под давлением, — обычно изготавливают в форме сферы (рис. 1 2,г/), цилиндра (рис. 1.2,6) каи тора (рис. 1.2, ). Габариты данньпс конструкций допускают их заводское изготовление и последующую доставку потребителю в готовом виде. При этом различают тонкостенные и толстостенные сосуды давления. Данное разделение гфоисходит от оценки напряженного состояния в оболочках. Для тонкостенных оболочек, а таки-  [c.7]

Наличие сварных соединений в сосудах и трубопроводах при расчетах на прочность учитывается введением в нормативные расчеты коэффициентов прочности сварных соединений /52/. Такой подход учета сварных соединений положен в основу расчетов почти всех отраслевых нормативных док ментов при оценке прочности оболочковых конструкций и он не отражает неоднородность механических свойств различных зон соединений, особенности их напряженного состояния и возможные механизмы их разрутиения при эксплуатации.  [c.80]

В связи с этим большой интерес представляют исследования, посвященные анализу прочности сварных соединений гфи двухосном нагружении. В частности, в /46/ предложен метод оценки механических свойств сварных соединений тонкостенных сосудов давления путем гидростатического выпучивания атоских образцов и цилиндрических обечаек. закрепленньрс по контуру. Требуемое соотношение компонент напряженного состояния п = 02 / а I в испытываемых образцах достигалось выбором соответствующего контура отверстия в матрице установки. При испытании выпу чиванием образцы располагались таким образом, чтобы шов был симметричен относительно кромок отверстия. Прочность сварного соединения по предлагаемой методике оценивалась косвенно по величине напряжений в основном металле в момент разрушения соединения.  [c.82]

Примерное протекание напряжений Oi(z) и 02(1) показано иа рис. 16.25, б, в. В месте перехода от цилиндрическо части сосуда к конической имеется скачок напряжений. Кроме того, в месте перехода возникает моментное напряженное состояние, и потому переходные зоны в оболочках подкрепляются кольцевыми поясами.  [c.546]

В качестве первого примера использования приводимых выше расчетных схем даны результаты исследования напряженного состояния в модели патрубковой зоны сосуда ВВЭР-1000, выполненной в масштабе 1 8 и нагруженной внутренним давлением в 7,5 МПа. Модель имеет двухрядную натру бковую зону со взаимным расположением патрубков, соответствующим натурной конструкции корпуса реактора, и изготовлена по штатной технологии с отбортовкой патрубков. Материал модели - сталь со следующими свойствами = 2,1 10 МПа, /1= 0,3. В силу симметрии модели рассматривается ее 1/8 часть, которая аппроксимирована 89 трехмерными конечными элементами изопараметрического типа с 20 узлами каждый, расположенными в один слой, поскольку поверхность модели существенно превышает ее объем. Использовалось 27 точек интегрирования на каждом элементе, из которых 3 точки по толщине. Конечноэлементная сетка, составленная из указанных элементов, имела сгущение вблизи галтельного перехода патрубка в корпус и показана на рис. 4.2 (выполненном не в масштабе).  [c.123]

Пимштейн П. Г., Семилетка Г. В. Напряженное состояние многослойного цилиндра высокого давления.— В кн. Вопросы прочности сосудов высокого давления.— Иркутск, ИркутскНИИхиммаш, 1969, с. 35—43.  [c.43]

На технологической линии ПО Уралхиммаш была доказана возможность получения из этих полотнищ многослойных обечаек удовлетворяющих требованиям технических условий на изготовление рулонированных сосудов. Из них было изготовлено и испытано три сосуда диаметром 600 и 800 мм. В результате прочностных исследований установлены следующие закономерности в сосуде, опрессован-ном технологическим давлением, межслойные зазоры одинаковы в обечайках из полотнищ и рулонной стали измерением напряженного состояния сосудов после опрессовки технологическим давлением отмечено отсутствие перегрузки внутреннего слоя по всей длине обечаек из полотнищ обычно характерное для сосудов с короткими рулонированными обечайками испытание сосудов до разрушения подтвердило высокую несущую способность рулонированной конструкции из полотнища, находящейся на уровне значений однослойных сосудов.  [c.60]

Тепловые испытания многослойных сосудов показали, что перепад температуры по толщине стенки в многослойных сосудах больше, чем в однослойных, вследствие особенностей контактного теплообмена на поверхностях соприкосновения слоев [20]. В результате экспериментальных исследований была установлена нелинейная зависимость контактных температурных сопротивлений в многослойном пакете от контактного давления [21]. На основе полученных зависимостей разработаны методы расчета теплового поля и температурных напряжений в многослойном цилиндре [22, 23] и в зоне кольцевого шва [24]. Описано качественно новое явление — зависимость поля температур от напряженного состояния многослойной стенки и, в частности, перепада температуры по толщине стенки от внутреннего давления (рис. 3). С учетом контактной теплопроводности решена также задача нахождения нестационарного темнератур-ного поля при внутреннем и наружном обогреве [251. Теоретические расчеты проверялись экспериментами на малых моделях [26], в том числе тепловыми испытаниями в специальном защитном кожухе. В настоящее время институт располагает защитным сосудом объемом 8 м , рассчитанным на пневматическое разрушение в нем экспериментальных сосудов.  [c.264]

Большая работа проводилась по исследованию напряженного состояния и нрочности боковых вводов в многослойную стенку. Тен-зометрическими исследованиями и испытаниями до разрушения пяти сосудов диаметром 600 мм с боковыми вводами диаметром до 200 мм и шести моделей диаметром 300 мм была обоснована работоспособность боковых вводов в многослойную стенку [35]. Аналогичные исследования проводились на двух многослойных сосудах полученных методом гильзования [36].  [c.265]


Смотреть страницы где упоминается термин Сосуд Напряженное состояние : [c.248]    [c.332]    [c.348]    [c.214]    [c.8]    [c.322]    [c.271]    [c.64]    [c.459]    [c.353]    [c.70]    [c.17]    [c.51]    [c.263]    [c.230]    [c.229]    [c.44]    [c.131]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.159 ]



ПОИСК



Напряженное состояние в в стенках толстостенных сосудов

Разумовский. Объемное напряженное состояние в зонах одиночных отверстий в крышках корпусов и сосудов

Сосуды



© 2025 Mash-xxl.info Реклама на сайте