Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженный металл

Согласно другой гипотезе, водородное растрескивание происходит вследствие диффузии и адсорбции водорода на дефектах в вершине трещины, что снижает поверхностную энергию атомов напряженного металла [35] (адсорбционное растрескивание).  [c.150]

Реальность данного механизма коррозионной усталости подтверждают исследования, показавшие что ползучесть (медленная пластическая деформация), которая также осуществляется путем переползания дислокации, ускоряется общей коррозией напряженного металла. Чем выше скорость коррозии, тем выше и скорость ползучести. Прекращение коррозии, например путем катодной защиты, ведет к уменьшению скорости ползучести до исходного значения. Влияние коррозии на ползучесть мелкозернисты, металлов наблюдается у меди, латуни [82], железа и углеродистой стали [831.  [c.164]


По сравнению с методом АЭ ММП начинает работать на более раннем этапе, начиная с превышения внешней нагрузкой уровня внутренних напряжений металла. Дня большинства малоуглеродистых марок сталей средний уровень внутренних напряжений, обусловленный неоднородностью структуры, равен 60-80 МПа, т.е. составляет -0,3 от предела текучести этих материалов. Из теории прочности и механики  [c.349]

Анализ процессов обработки заготовок упругопластическим деформированием показывает, что все они сопряжены с возникновением в материале остаточных деформаций и напряжений, приводящих к охрупчиванию и повышению степени напряженности металла.  [c.368]

Существующие методы расчета на прочность не учитывают фактора механической неоднородности. Между тем, в большинстве случаев разрушения сварных соединений аппаратов происходят в области твердых, охрупченных участков зоны термического влияния. Следует также помнить, что локальный сварочный нагрев приводит к возникновению остаточных напряжений, способствующих повышению уровня напряженности металла.  [c.368]

До определенного момента дисклинации имеют возможность перемещаться лишь параллельно самим себе (трансляционный характер перемещения). Это обусловлено относительно низкой плотностью дислокаций, которая недостаточна, чтобы обеспечить возможность какого-либо еще вида движения внутри металла, ведь дислокации делают структуру металла более разряженной и внутренне напряженной. Металл становится более текучим и по ряду свойств приближается к жидкому состоянию. Некоторые авторы предлагают рассматривать пластически деформированное состояние металла как особое сильно возбужденное состояние кристалла, к которому принципиально неприменима теория возмущений идеального кристалла.  [c.109]

Коэффициент влияния градиента напряжений K(Q) уменьшается с увеличением отношения О-пц/СТв- Наиболее чувствительны к концентрации напряжений металлы, для которых отношение 0пц/(1в велико.  [c.126]

Образование трещин в паровых котлах необходимо рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла в щелочном концентрате котловой воды.  [c.7]

При проведении коррозионных испытаний собранные указанным способом приборы в количестве 10 шт. помещают в воздушный термостат, где поддерживается температура 320 °С, соответствующая упругости водяных паров, образующихся в образцах вследствие кипения растворов при давлении около 10 Па. Это давление создает внутри прибора постоянное напряжение металла, которое в середине проточенной части образца наибольшее. Давление можно вычислить, пользуясь следующей формулой  [c.179]


Вследствие своего положения в ряду напряжений металлов цинк травится даже очень сильно разбавленными кислотами. Реактивы для более благородных металлов и сплавов не могут быть использованы для выявления структуры цинка, так как он при этом покрывается темным осадком.  [c.220]

Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

Механохимический эффект при напряжениях ниже макроскопического предела текучести был установлен в работах по Изучению коррозионного растворения напряженного металла (которое для краткости будем называть механохимической коррозией).  [c.31]

Таким образом, три характеристики — ингибирующий эффект, поверхностная активность и пластифицирующее действие органических катионов коррелируют между собой. Несмотря на некоторое пластифицирующее действие эффективных ингибиторов коррозии, их защитное действие намного выше и способствует увеличению работоспособности напряженного металла в коррозионных средах.  [c.142]

Изучение кинетики наводороживания закаленной стали ЗОХ в присутствии различных ингибиторов при стационарном потенциале коррозии позволило установить роль ингибиторов в раздельном торможении коррозии и наводороживания и соответственно классифицировать их по этому действию [116] для подбора ингибиторов коррозии под напряжением. Оказалось, что все ингибиторы кислотной коррозии тормозят проникновение водорода в металл при стационарном потенциале, уменьшая скорость коррозии, а следовательно, и плотность тока катодного процесса. В то же время по величине отношения количества водорода, проникшего в металл, к общему количеству выделившегося водорода все ингибиторы коррозии подразделяются на ингибиторы или стимуляторы наводороживания. Такое разделение позволяет более эффективно подбирать ингибиторы, предотвращающие кислотную коррозию и охрупчивание напряженного металла.  [c.162]

Как отмечал П. В. Бриджмен, еще в 1888 г. было известно, что электродвижущая сила элемента зависит от состояния напряжения металла электродов . Вообще говоря, влияние гетерогенных механических воздействий на химические реакции (при деформировании одного или нескольких исходных реагирующих веществ) было известно давно. Однако подлинное развитие как научное направление механохимия твердых тел получила только в последние десятилетия и теперь, охватывает задачи разных отраслей народного хозяйства, объединенные потребностью ...использования или предотвращения тех химических реакций, которые вызываются или ускоряются механической активацией (П. А. Ребиндер).  [c.3]

Причина существования предельного значения допустимой величины начального напряжения а для заданного уровня Го заключается в ускоряющем действии механических напряжений на скорость растворения металла (механохимический эффект), которое усиливается с ростом абсолютной величины шаровой части тензора напряжений независимо от выбранной величины коэффициента использования несущей способности F . Уменьшение шаровой части тензора напряжений может быть достигнуто как уменьшением напряженности металла сооружения, так и конструктивными мероприятиями, изменяющими соотношение между шаровой и девиаторной составляющими напряжений (например для трубопроводов — утолщением стенки трубы).  [c.39]

Указанное подразделение позволяет более эффективно подбирать ингибиторы, предотвращающие кислотную коррозию и охрупчивание напряженного металла.  [c.164]

О вредном влиянии углерода на напряженный металл отмечается во многих работах. В работе [84 1 показано, что мягкие стали с содержанием углерода до 0,3 % в среде, содержащей 15 %  [c.29]


Детали и конструкции, работающие в условиях агрессивных сред, часто подвергаются коррозионно-механическому разрушению под совместным воздействием коррозии и механических напряжений. Существует пять характерных случаев коррозионно-механического разрушения металлоконструкций, отличающихся своеобразием воздействия механического фактора Г) общая коррозия напряженного металла (не сопровождающаяся хрупким механическим разрушением) 2) коррозионное растрескивание 3) коррозионная усталость 4) коррозионная кавитация 5) коррозионная эрозия (коррозионное истирание, фреттинг).  [c.64]

По адсорбционной теории Улига [351 КР объясняется ослаб лением межатомных связей в напряженном металле при адсорбции специфических компонентов, главным образом анионов раствора. Активные анионы адсорбируются преимущественно на подвижных дислокациях или других несовершенствах структуры, что снижает поверхностную энергию. Это облегчает разрыв межатомных связей в металле, находящемся под растягивающими напряжениями. На основании этой теории объясняется специфическое влияние различных сред, вызывающих КР, а также действие катодной защиты.  [c.67]

Зарождение трещин в металле при наложении растягивающих напряжений обычно происходит в средах, которые вызывают локализованную коррозию. Образование первичных трещин может быть связано с возникновением туннелей (порядка 0,05 мкм) или с начальными стадиями зарождения питтингов. Всевозможные нарушения кристаллического строения (границы зерен, включения, дислокации), риска, субмикроскопические трещины в металле или на защитной пленке могут стать местами зарождения трещин и значительно повышать склонность к КР. Интенсивная коррозия металла на отдельных ограниченных участках поверхности напряженного металла, испытывающего растягивающие напряжения, может привести к образованию очень узких углублений, величина которых может быть соизмерима с межатомными расстояниями. Отмечается, что существует критический потенциал КР, отрицательнее которого КР не будет происходить. Например, критический потенциал КР стали типа 18-8 в кипящем хлориде магния составляет — 0,14 В. При более положительных потенциалах (анодная поляризация) происходит  [c.67]

II создающихся при этом локальных напряжений металл после быстрого охлаждения становится малопластпчным при обычных температурах. Улучшения пластичности можно достичь последующим отжигом или высоким отпуском при температуре 730—790 С (в зависимости от состава стали).  [c.261]

Коррозионное растрескивание напряженного металла развивается последовательно в несколько стадий начальная — от. момента действия агрессивной среды до возникновения разрушений в виде первичных трещин, и последующие стадии, при которых трещины развиваются так иитеиенвио, что наступает мгновенное ра фушенис металла. На рис. 78 показана в качестве примера одна из последних стадий развития понерхиостиых трещин в око-лошовной сварной зоне, у котороГ остаточные напряжения не были сняты.  [c.108]

О причинах возникновения трещин в котельном металле и о ме. а1Н1зме воздействия на напряженный металл растворов едких ще,10чс11 существует много нредположени , но ясности и единого  [c.112]

Местом возникновения опасных в от[юшении щелочной хрупкости напряжений является, как правило, слой металла, непосредственно примыкающий к заклепочному отверстию или вальцовочному соединению. Суммарное напряжение металла в этом  [c.120]

Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла.  [c.163]

Исследовано влияние на дислокационную структуру напряженного металла энергетических параметров нмпульсов давления. Показано, ЧТО определяющими являются их энергия и количество, т. е. суммарная энергия. В этой связи ЭГО следует рассматривать в основном как активирующий фактор для процессов релаксации остаточных как микро-, TOI и макронапряжений.  [c.79]

В - мзирина полотна тарелки, требуемая для размещения опорной балки, м о - число опорных балок е - ширина опорной конструкции по периметру тарелки р, -расчетное давление в аппарате, Па о-допустимое напряжение металла корпуса, Па С - прибавка на коррозию к - отношение высоты к диаметру элемента р -  [c.295]

Как отмечает П. В. Бриджмен, еще в 1888,г. ... было известно, что электродвижущая сила элемента зависит от состояния напряжения металла электродов . Вообще говоря, влияние гетерогенных механических воздействий на химические реакции (т. е. деформирование одного или нескольких исходных реагирующих веществ) человек использовал уже в глубокой древности, например при получении огня трением. Однако подлинное развитие как научное направление механохи только  [c.5]


В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе USO4. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале.  [c.92]

Изменение строения двойного слоя, связанное с повышением общей концентрации электролита, приводит к уменьшению толщины двойного слоя и увеличивает, следовательно, градиент поля при постоянной величине электродного потенциала. По-видимому, с этим обстоятельством связан подбор опытным путем в качестве модельного электролита для ускоренных испытаний стали на коррозионное растрескивание насыщенного раствора Mg la [64]. Увеличение концентрации водного раствора H2SO4 монотонно снижает время до разрушения закаленной стали, хотя концентрационная зависимость скорости общей коррозии имеет два максимума. Это явление можно объяснить адсорбционным эффектом Ребиндера и усилением избирательности коррозии, т. е. локализацией растворения под действием напряжений. При максимальных напряжениях ниже предела текучести скорость общей коррозии высокопрочных сталей увеличивается всего в несколько раз [22], а коррозионное растрескивание наступает быстро, что обусловлено локализацией растворения напряженного металла. В опытах [132] с концентрированной серной кислотой поверхность стали не имела следов коррозии, хотя образцы растрескивались в течение нескольких минут. По-видимому, под влиянием одновременно действующих кислоты высокой концентрации и механических напряжений происходят локализация коррозии, адсорбционное понижение прочности (эффект Ре- биндера) и, следовательно, повышение склонности к коррозионному pa -f трескиванню.  [c.172]

В последние годы автором (совлшстно с Л. Н, Хлесткиной) показано каталитическое действие железа на разложение хлор-органических компонентов нефти с выделением агрессивного хлористого водорода, вызывающего коррозию оборудования по переработке нефти при термической активации нефти до 200 С, что эквивалентно снижению кажущейся энергии активации процесса на 29—62,7 Дж/моль. Если учесть, что рентгеноструктурный анализ дает величину 41,8 кДж/моль для запасенной энергии решетки в области плоскостей скольжения механически активированного железа, то можно предположить коррозионное воздействие компонентов нефти на напряженный металл даже в тех случаях, когда они инактивны к ненапряженному металлу.  [c.228]

ЭДС. Ряд напряжений металлов или стандартные электродные потен11,иалы равновесного процесса Ме + + ге = Me по отношению к НВЭ  [c.19]


Смотреть страницы где упоминается термин Напряженный металл : [c.28]    [c.141]    [c.294]    [c.373]    [c.272]    [c.22]    [c.23]    [c.116]    [c.8]    [c.42]    [c.34]    [c.90]    [c.171]    [c.31]    [c.75]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.0 ]



ПОИСК



Влияние напряженного состояния металла оборудования на коррозионные процессы

Влияние напряженного состояния на износостойкость металла

Влияние напряженного состояния на интенсивность гидроэрозии металлов

Влияние неравномерности распределения механических свойств металлов различных тон сварных соединений на их напряженное состояние и несущую способность и ее учет при оценке прочности конструкций

Вязкоупругость и напряженное состояние ударно-сжатых металлов

Горелов, О. В. Сорокин. Ползучесть металлов и сплавов в условиях сложного напряженного состояния

Деформация идеализированного металла при различных видах напряженного состояния

Замечание Людвика по поводу пластичности металлов при двухосных напряженных состояниях

Классификация методов ковки по напряжённому состоянию деформируемого металла

Металлы напряженное состояние

Напряженное состояние и статическая прочность механически неоднородных сварных соединений с плоскостным дефектом на границе мягкой прослойки и твердого основного металла

Напряженный металл общая коррозия

Пластическое разрушение глубинных стальных обсадных труб под действием внешнего давления и осевого растяжеИспытание на пластическое течение и разрушение металлов при сложном напряженном состоянии

Поверхности прочности для анизотропных металлов при плоских напряженных состояниях

Ползучесть металлов Влияние на при напряженном состоянии сложном

Согласование результатов различных видов испытаний металлов при одноосном напряженном состоянии

Сорокин, Г. А. Туляков. Установка для испытания металлов i на ползучесть при сложно-напряженном состоянии (растяжение с кручением)

Усталость металлов при сложном напряженном состояний



© 2025 Mash-xxl.info Реклама на сайте