Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка ферритно-аустенитных нержавеющих сталей

В Швеции было исследовано коррозионное поведение 17 различных сплавов, применяемых в трубчатых теплообменниках. Испытания проводили в чистой воде Балтийского моря (содержание хлоридов 4 мг/кг) при температуре 50 С и скорости потока от 2 до 5 м/с. Продолжительность экспозиции 15000 ч [240]. В этих условиях абсолютной коррозионной стойкостью обладали титан. Сплав 825 и молибденовые аустенитные нержавеющие стали — эти металлы не корродировали даже в щелях сложной формы. Межкристаллитная коррозия наблюдалась на примыкающих к сварным швам участках ферритных молибденовых нержавеющих сталей, но позже было установлено, что эти образцы перед сваркой случайно подверглись цементации. Алюминиевые и некоторые медные сплавы при использованных скоростях потока подвергались эрозионной коррозии. Сплав 70—30 Си—Ni—Fe сохранял стойкость при скорости воды от 4 до 5 м/с.  [c.201]


Техника и режимы сварки ферритно-аустенитных сталей не отличаются от общепринятых для всего класса нержавеющих сталей.  [c.370]

На межкристаллитную коррозию (ГОСТ 6032—63) испытывают только те изделия, сварные соединения которых подвергаются действию агрессивных рабочих сред. Высокой стойкостью против коррозии обладают нержавеющие стали аустенитного и аустенито-ферритно-го классов. Сварка этих сталей может вызвать снижение их коррозионной стойкости, особенно в околошовной зоне, вследствие обеднения зерен металла легирующими элементами, прежде всего хромом.  [c.270]

Метод Г. Этот метод применяется для контроля правильности технологии сварки и других технологических процессов, связанных с нагревом кислотостойких, жаропрочных и нержавеющих сталей аустенитного и аустенитно-ферритного класса разных марок.  [c.140]

Сварка аустенитных хромоникелевых сталей. Введение в 18 )-ную хромистую сталь 8% никеля переводит ее из ферритного класса в аустенитный. По сравнению с ферритными сталями аустенитные обладают более высокой коррозионной стойкостью и жаропрочностью. При сварке нержавеющих сталей типа 18-8 (18% Сг и 8 6 N1) возможно выпадение карбидов хрома по границам зерен при продолжительном пребывании металла в зоне температур 500—800° С и возникновение склонности к межкристаллитной коррозии. Для получения коррозионностойких сварных соединений необходимо применять следующие меры  [c.370]

Сенсибилизация ферритных нержавеющих сталей наблюдается при температурах, превышающих 925 °С стойкость к межкристаллитной коррозии восстанавливается при кратковременном (10—60 мин) нагреве при 650—815 °С. Следует отметить, что эти температурные интервалы заметно отличаются от соответствующих интервалов для аустенитных нержавеющих сталей. Для ускоренных испытаний на межкристаллитную коррозию применяют аналогичные растворы (например, кипящий раствор USO4— H2SO4 или 65 % HNO3). Скорость межкристаллитной коррозии и степень поражения сталей обоих классов в этих растворах примерно одинаковы. Однако в сварных изделиях разрушения в ферритных сталях происходят как в области, непосредственно прилегающей к месту сварки, так и самом сварном шве, а в аустенитных сталях разрушения локализованы в околошовной зоне.  [c.309]

Хромистые стали с содержанием хрома 17% и выше относятся к ферритному классу нержавеющих сталей. Однако образование однофазной ферритной структуры в стали зависит от содержания углерода. При содержании углерода до 0,15% сталь имеет однофазное строение, при содержании свыше 0,15% —двухфазное (феррито-мартенситное). Высокохромистые стали с содержанием 17% хрома обладают более высокой коррозионной устойчивостью, чем 12%-ные хромистые стали, особенно против воздействия азотной кислоты и ряда других сред. Эти стали применяются для изготовления химической аппаратуры (абсорбционные башни, теплообменники, баки для хранения, цистерны для транспортировки азотной кислоты и т. д.), в производстве резины, нефти, в пищевой промышленности, изготовлении насосов, болтов, гаек н других деталей машин. Они могут быть использованы так же, как и автоматная сталь, при введении в их состав в небольших количествах серы или селена. Рассматриваемые стали обладают устойчивостью против окисления до температуры 870°, хорошо полируются и обладают небольшой склонностью к наклепу по сравнению с нержавеющими сталями аустенитного класса. В тонких сечениях эти стали легко свариваются, но при изготовлении массивных сварных конструкций они склонны к сильному росту зерна при температурах выше 980°, и поэтому ихприменение ограничено. Сварку этих сталей рекомендуется производить после предварительного подогрева до температуры около 200°, так как при этой температуре стали приобретают некоторую вязкость. Для снятия напряжений эти стали после сварки следует отжигать при температуре 760°. При нагреве выше 980° в этих сталях наблюдается интенсивный рост зерна.  [c.219]


Другим способом устранения хрупкости промежуточного слоя при ферритном варианте сварки является применение плакирующего слоя из двухфазной нержавеющей стали аустенитно-феррит-ного класса.  [c.197]

При содержании в проволоке легирующих элементов более 6% ее относят к высоколегированным (табл. 10-23 и 10-24). Высоколегированные аустенитные и ферритные проволоки применяют для сварки нержавеющих, жаростойких и других специальных сталей различного состава. Аустенитная проволока после волочения сильно нагартовывается и обладает большой жесткостью. Это облегчает подачу проволоки диаметром 2—3 мм по гибким шлангам при полуавтоматической сварке, но весьма затрудняет работу с проволокой большого диаметра. При автоматической сварке наклепанной аустенитной проволокой диаметром 4—6 мм ее следует предварительно подвергнуть термообработке. В зависимости от состава проволоки и степени наклепа термообработка может заключаться или в отжиге, или в закалке.  [c.289]

Аустенитно-ферритные стали можно сваривать как ручной и механизированной электродуговой сваркой, так и другими способами сварки (электроннолучевой, электрошлаковой), плазменнодуговой и др.). Предпочтительнее способы сварки с невысокими погонными энергиями. Техника и режимы сварки аустенитно-ферритных сталей не отличаются от общепринятых для всего класса нержавеющих сталей. При выборе видов швов сварных соединений рекомендуется руководствоваться ГОСТ 5264—69, ГОСТ 8713—70, ГОСТ 14771—69, ОСТ 26-291—71 и стандартами предприятий. Подготовка кромок под все виды сварки производится механическим способом, чтобы исключить возникновение зон термического влияни,я (ЗТВ), снижающих регламентированные свойства сварных соединений. Сварочные материалы, применяемые для сварки аустенитно-ферритных сталей, приведены в табл.  [c.285]


Смотреть страницы где упоминается термин Сварка ферритно-аустенитных нержавеющих сталей : [c.367]    [c.181]    [c.253]    [c.129]   
Смотреть главы в:

Электродуговая сварка сталей  -> Сварка ферритно-аустенитных нержавеющих сталей



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Аустенитная сталь нержавеющая

Нержавеющие Сварка

Сталь Сварка

Сталь аустенитная

Сталь аустенитная сварка

Сталь нержавеющая

Сталь ферритная

Ферритная нержавеющая сталь



© 2025 Mash-xxl.info Реклама на сайте