Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бронза алюминиевая конструкционная

В качестве конструкционного материала применяют сплавы меди латуни, оловянные и специальные бронзы (алюминиевые, бериллиевые, свинцовые и др.).  [c.141]

Листовой штамповкой изготовляют до 80% деталей, являющихся составными частями радиоэлектронной аппаратуры. Конструкционные детали для приводных неэлектрических и других механизмов изготовляют из углеродистых и легированных сталей, латуней, бронз, алюминиевых сплавов, текстолита, гетинакса и других материалов.  [c.241]


Большое внимание уделяется новым и специальным жаропрочным, инструментальным, коррозионностойким, высокопрочным сталям (их составу, свойствам и применению), конструкционным титановым и алюминиевым сплавам, легированным бронзам, тугоплавким металлам и сплавам, стеклу и стеклокерамике.  [c.2]

Свариваемые металлы. Стыковой сваркой (в том числе и ударной) свариваются между собой почти все металлы и сплавы, а именно а) конструкционные, углеродистые и специальные стали во всех возможных сочетаниях, как, например, углеродистая с быстрорежущей, быстрорежущая с нержавеющей, хромоникелевая с малоуглеродистой б) углеродистые и специальные стали с ковким чугуном, всеми сортами латуней и бронз, монель-металлом, медью, никелем, сплавами высокого электрического сопротивления, немагнитными сплавами, вольфрамом, молибденом, оловом, свинцом, сурьмой и всеми благородными металлами в) алюминий с алюминиевыми сплавами, медью и большинством сортов латуней и бронз г) вольфрам с медью и медными сплавами, а также сплавами высокого электрического сопротивления д) никель с медью, латунями и бронзами.  [c.356]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

В зарубежной практике гребные винты для ответственных судов изготовляют чаще всего из специальных латуней и алюминиевых бронз. В настоящее время специальные латуни постепенно вытесняются алюминиевыми бронзами благодаря высоким прочности, сопротивляемости усталости, стойкости против коррозии и эрозии, отсутствию склонности к коррозионному растрескиванию, а также меньшей массе [27]. В последние годы для изготовления винтов обычного класса за рубежом начали применять недорогие коррозионно-стойкие, а также низколегированные конструкционные стали. По данным некоторых компаний, винты из легированных сталей отличаются несколько большей эксплуатационной стойкостью, чем винты из углеродистых сталей, так как легированные стали обычно имеют повышенное сопротивление гидроэрозии и большую коррозионную стойкость в морской воде.  [c.11]


Учитывая заметную разность потенциалов между различными сплавами, применяющимися в авиации, Симпсон [5] подчеркивает, что высокопрочный алюминиевый сплав, являющийся основным конструкционным материалом в авиации, должен быть особенно тщательно изолирован от магниевых сплавов, марганцовистых бронз, нержавеющих и малоуглеродистых сталей. Контакт алюминиевого сплава с нержавеющей сталью в эксплуатации не так уж опасен, как этого можно было ожидать, исходя из разности потенциалов. Это объясняется способностью алюминиевого сплава к сильной анодной поляризации. Однако этот эффект проявляется лишь в средах, не содержащих галоидных ионов. В их же присутствии контактная коррозия не подавляется и алюминиевый сплав подвергается коррозии. В этих условиях следует позаботиться о защите контакта.  [c.138]

Эталоны должны быть по своему общему составу близки к анализируемым образцам. Углеродистые и большинство конструкционных сталей могут анализироваться при помощи одного комплекта эталонов. Большинство марок быстрорежущей, жароупорной, нержавеющей стали, бронз, латуней и алюминиевых сплавов требует отдельных наборов эталонов.  [c.54]

Цветные металлы и сплавы. В настоящее время используют около 65 цветных металлов и очень много цветных сплавов. К ним относятся медь, алюминий, титан, никель, олово, цинк и т. д. алюминиевые, титановые, медные и многие другие сплавы. Хром, никель и многие другие элементы используют для получения наиболее качественных конструкционных легированных, нержавеющих, жаропрочных сталей. Алюминиевые и титановые сплавы — основные конструкционные материалы в авиации и некоторых других областях техники. Медь — основной проводниковый материал в электро-и радиотехнике медные сплавы — латуни и бронзы— широко применяют в машиностроении. Все более широкое применение находят тугоплавкие и редкие металлы молибден, тантал, бериллий и др.  [c.14]

Цветные металлы и сплавы. Медь, алюминий, цинк, марганец, титан и другие цветные металлы широко применяют в промышленности (приборостроении, самолетостроении и др.). Однако в качестве конструкционных материалов чаще применяют их сплавы. К сплавам цветных металлов, наиболее часто обрабатываемым на токарных станках, относятся бронза, латунь, алюминиевые сплавы и др.  [c.7]

Основными материалами, применяемыми при изготовлении деталей этого класса, являются конструкционные стали, а если допускают условия прочности, то применяют чугун, а также прочные бронзы и алюминиевые сплавы.  [c.137]

Первое направление — создание путем подходящего легирования более совершенного экранирующего слоя продуктов коррозии, дающего общее повышение коррозионной устойчивости сплава,— имеет сравнительно ограниченные возможности для повышения устойчивости против электрохимической коррозии. Причина этого, по-видимому, заключается в том, что достаточно полного экранирования при электрохимической коррозии в электролитах продукты коррозии, как правило, дать не могут, так как образование этих продуктов (при гетерогенно-электрохимическом механизме коррозии) будет происходить не непосредственно на анодных поверхностях, а в растворе между анодными и катодными участками. Можно ожидать заметно большей зашиты в результате уплотнения вторичных продуктов коррозии и образования защитных слоев в условиях протекания коррозионного процесса в атмосферных условиях. В качестве конкретного примера можно указать на повышение коррозионной устой чивости меди при ее легировании цинком или алюминием, т. е. на повышенную коррозионную устойчивость латуней и алюминиевых бронз по сравнению с чистой медью. Повышенная устойчивость медистых сталей по сравнению с обычными конструкционными сталями должна в некоторой мере объясняться также уплотнением продуктов коррозии, хотя в данном случае, помимо этого фактора, как будет разобрано ниже, значительную роль играет анодное торможение. Однако для повышения устойчивости сплава по отношению к химической коррозии и, в частности, к имеющей такое большое значение в технике газовой высокотемпературной коррозии этот путь будет являться основным.  [c.438]


Детали измерительных приборов из1ГОтовляют из конструкционной и инструментальной стали, латуни, бронзы, алюминиевых и цинковых сплавов.  [c.13]

В соответствии с ГОСТами в кузнечно-прессовых цехах обрабатывалась сталь различных сортов, марок — углеродистая обыкновенного качества, конструкционная качественная, легированная качественная, сортовая круглая, квадратная, толстолистовая и широкополосовая для стационарных котлов, осевая заготовка, котельная и топочная для паровозов, рессорнопружинная для бандажей колес локомотивов и вагонов, углеродистая инструментальная качественная и высококачественная, инструментальная легированная, штампован, инструментальная быстрорежупцая. Давлением обрабатывались бронза оловянистая, алюминиевая, кремнистая и латунь, алюминиевые и магниевые сплавы, нержавеюш ая и жаропрочная сталь и др. Общая номенклатура обрабатываемых в кузнечно-прессовых цехах материалов состояла более чем из двухсот марок.  [c.108]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Для листовой штамповки применяют следующие материалы лента стальная низкоуглеродистая холодной прокатки (ГОСТ 503-41) лента стальная холодно-катанная из конструкционной стали (ГОСТ 2284-43) лента стальная горяче-катанная ГОСТ 6009-51 сталь прока-т .нная тонколистовая (ГОСТ 3680-47) сталь листован декапированная (ГОСТ 1386-47) жесть черная полированная (ГОСТ 1127-47) сталь листовая кровельная (ГОСТ 1393-47) сталь тонколистовая качественная углеродистая конструкционная (ГОСТ 914-47) стальугле-родистая горячекатанная обыкновенная (ГОСТ 380-50) сталь качественная конструкционная углеродистая горячекатанная сортовая (ГОСТ I050-.52) листы и полосы латунные (ГОСТ 931-. i2) сплавы медноцинковые, латунные (ГОСТ 1019-47) ленты холоднокатанные из тяжелых цветных металлов и сплавов (ГОСТ 3718-47) листы медные горяче-катанные (ГОСТ 495-50) ленты медные общего назначения (ГОСТ 1173-49) ленты алюминиевой бронзы для пружин (ГОСТ 1048-49) ленты латунные общего назначения (ГОСТ 2208-49), ленты ни-  [c.149]

В табл. 16.1 представлены данные, характеризующие коррозионную стойкость металлических материалов в растворах хлораминов. Углеродистая сталь в щелочных растворах хлораминов подвергается коррозии со значительной скоростью. При этом растворы приобретают черную окраску. Весьма инертны к действию водных растворов хлораминов стали Х18Н10Т, Х17Н13М2Т, никель и его сплавы, алюминиевая бронза Бр.А5, алюминиевые латуни, содержащие 2—2,5% алюминия. Удовлетворительной стойкостью в этих растворах обладает свинец. Указанные металлы используют в качестве конструкционных и защитных материалов для изготовления оборудования в производстве хлораминов [1]. Алюминий и его сплавы стойки в слабощелочных и нейтральных растворах хлораминов лишь при комнатной температуре.  [c.371]

Алюминиевые броязм благодаря высоким механическим свойствам, хорошей обрабатываемости и коррозионной стойкости являются широко применяемым конструкционным материалом. Так, предел прочности одной из наиболее распространенных алюминиевых бронз БрАЖ 9-4 равен примерно 55 кгс/мм , а твердость составляет НВ 140—160. Из алюминиевых бронз изготавливают шестерни, втулки, подшипники, пружины и другие детали.  [c.144]

Приведены результаты исследования по подбору конструкционных материалов для сред, соответствующих производству сернокислого глинозема и J-t-К-квасцов. В чистых растворах, не содержащих примесей нелеза, устойчивыми материалами являются алюминиевые бронзы. Б присутствии ионов .3-е устойчивы - Xl - (Xt. стаяи. Свинцовый сплав гартблей применим вне зависимости от содержания железа.  [c.186]


Все крепежные изделия изготовляют из углеродистой конструкционной стали 10, 20, 35, 45, легированной стали ЗОХГСА, 40ХН2МА, латуни Л60, бронзы БрАМцЭ—2, алюминиевых сплавов АМг5, Д16 и других материалов. Мелкие резьбовые детали выполняют из автоматных сталей марок А12, А20, АЗО.  [c.146]

Условия пластичности Сен-Венана и Губер-Мизеса справедливы. однако, только для некоторых чистых металлов с простейшим строением атомно-кристаллической решетки и мягких отожженных сталей (см. гл. I), Пределы текучести нри кручении других металлических материалов, как это следует из экспериментальных определений этой характеристики, произведенных, в частности, С. Т. Кигакиным и С. И. Ратнер [83], могут значительно отк, 1оняться от приведенных теоретических соотношений как в большую, так и в мепьшую сторону. Фактически, в зависимости от структуры металла (его кристаллической решетки, состава, режима термической обработки), отношение условного (расчетного) предела текучести То,з к (Ти,2 Для различных металлических материалов колеблется в пределах 0.25 0,84, а отношение истинного предела текучести при кручении о,з к ао,а — в пределах 0,25 0,74. Для высокопрочных сталей, деформируемых алюминиевых сплавов, магниевых сплавов, бронзы отклонения от теоретического соотношения достигают 30—40%. У конструкционных сталей с метастабильной структурой (пониженные  [c.65]

В ГЛ. 6 приведены нормативы режимов резания, охватывающие 4 бработку протягиванием наиболее раслро-странеиных в машиностроении конструкционных, углеродистых и легированных сталей, чугунов, бронз, латуней, алюминиевых сплавов и труднообрабатываемых материалов.  [c.292]

Предварительнйя гермическая обработка деталей из сталей перлитного класса чаще всего состоит из дтжига. Иногда производится нормализация горячекатаной пружинной стали перед навивкой, низкоуглеродистых Листовых сталей перед глубокой вытяжкой. Заготовки из сталей аустенитного и ферритного класса бериллиевой бронзы и многих алюминиевых сплавов, наоборот, закаливаются для повышения их пластичности. Окончательная термическая обработка — обычнр упрочняющая нормализация или закалка и высокий отпуск деталей из конструкционных сталей, закалка и старение многих алюминиевых сплавов.  [c.260]

Из цветных коррозионностойких конструкционных сплавов интерес представляют алюминиевые и кремнистые бронзы, специальные латуни и медноннкелевые сплавы.  [c.115]

В технике, особенно в высоконагруженных силовых узлах, в основном используются различные стали также большое распространение имеют латуни и бронзы. Поэтому первый способ защиты от фреттинг-коррозии в конечном счете сводится к применению в качестве за цитно-го материала титановых или алюминиевых сплавов, так как они являются хорошими конструкционными материалами и в соответствии с рядом металлов Вольта обладают по отношению к сплавам на основе железа, меди и никеля достаточно высокой контактной разностью потенциалов как раз того направления, которое необходимо для предотвращения фреттинг-коррозии.  [c.157]

Для пайки в среде водорода непригодны детали из алюминиевой бронзы Тг, Та, Zn. Успешно паяются в среде водорода изделия из низкоуглеродистой, среднеуглеродистой конструкционной и инструментальной углеродистой сталей, кобальто-вольфрамовых сплавов, бескислородной меди, латуней, ковара Н29К18А и инвара.  [c.305]

Защита водоочистительного оборудования в тех случаях, когда на него действуют кислые растворы (дренал ные устройства, детали катионитовых фильтров, трубопроводы и др.), решается путем подбора соответствующих коррозионностойких металлов или сплавов (высоколегированные хромоникелевые стали типа Х18Н9 с молибденом, алюминиевая бронза, медь, свинец и др.), неметаллических конструкционных химически стойких материалов, обкладок и покрытий на их основе (обкладка резиной, перхлорвиниловый лак, полиизобутилен, асбовинил, винипласт др.) или путем обработки среды. Для нейтральной и слабощелочной сред пригодны обычная углеродистая сталь и чугун.  [c.176]

Возможности чистовой вырубки пробивки). Чистовая вырубка (пробивка) применяется для штамповки деталей из конструкционных и легированнкх сталей, латуни с содержанием меди не менее 63 %, бронзы с содержанием меди не менее 92 %, а также из алюминия и алюминиевых сплавов с пределом прочности при растяжений не более 300 МПа.  [c.142]


Смотреть страницы где упоминается термин Бронза алюминиевая конструкционная : [c.450]    [c.24]    [c.491]    [c.25]    [c.17]    [c.65]    [c.358]    [c.194]    [c.207]    [c.208]    [c.210]    [c.214]    [c.169]    [c.360]    [c.87]   
Конструкционные материалы Энциклопедия (1965) -- [ c.143 ]



ПОИСК



Бронза

Бронза алюминиевая



© 2025 Mash-xxl.info Реклама на сайте