Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевые штамповки

Влияние неметаллических включений 6—467 Алюминиевые штамповки — Формы отверстий  [c.12]

Горячая листовая штамповка алюминиевых сплавов имеет следующие особенности [ ЗХ]  [c.11]

Для ковки и штамповки применяются алюминиевые сплавы марок АК1, АК2, АКЗ и т.п., предусмотренные СТ СЭВ 730-77. Обозначение сплавов этих марок имеет вид АК2 СТ СЭВ 730-77.  [c.188]

Есть детали, изготавливаемые отливкой или штамповкой из алюминиевых сплавов, которые работают при темиература.х порядка 200---300°С и даже 350°С (например, поршень, головка цилиндра и т. п.).  [c.594]


Буква Л в обозначении марок алюминиевых сплавов указывает, что алюминиевый сплав предназначен для литья, буква К указывает, что алюминиевый сплав предназначен для ковки и штамповки, буква Д указывает, что алюминий и его сплавы деформируемые. Цифра указывает на условный номер сплава.  [c.187]

Применительно к алюминиевым сплавам интервалу /// скоростей соответствуют режимы штамповки.  [c.378]

Гидровинтовые прессы изготовляют усилием 1...100 МН. Прессы снабжены нижним выталкивателем и приспособлены для штамповки в разъемной матрице. Они менее быстроходны, чем винтовые фрикционные прессы, компактны и более мощны (энергия удара в десятки раз больше энергии наиболее крупных винтовых фрикционных прессов). На гидровинтовых прессах получают поковки из алюминиевых сплавов с высокими ребрами толщиной до 0,5 мм при штамповочном уклоне 0,5° и радиусе закругления 0,3 мм.  [c.131]

Гидравлические прессы используют также для штамповки металлов и сплавов с небольшой температурой начала штамповки (алюминиевые и магниевые сплавы) и для штамповки крупных поковок, которые нельзя получить на другом оборудовании из-за недостатка мощности.  [c.132]

При изготовлении корпусных деталей приборов методом холодной штамповки форма и размеры заготовки определяются опытным путем. Основными операциями, с помощью которых получают нужную форму и размеры корпусной детали, являются гибка и вытяжка. Толщина 5 листового материала обычно составляет 0,7—2 мм. Радиусы гибки Я определяются в зависимости от вида и толщины материала обычно для стали Я = 0,5з, алюминиевых сплавов Я = 0,35, дуралюмина Я = 1,35. Элементы штампованных корпусных деталей наиболее рационально соединять с помощью контактной точечной сварки (см. 119).  [c.487]

Другим интересным направлением прикладных работ является использование наноструктурных алюминиевых сплавов для получения легких изделий сложной формы в режиме высокоскоростного сверхпластического формообразования (см. гл. 5). На рис. 6.20 приведен пример изделия сложной формы типа Фит-тинг , полученного из алюминиевого сплава 1420 при штамповке в следующих режимах  [c.248]

Полуфабрикаты из алюминиевых сплавов, изготовленные из одной и той же заготовки разными способами (прокаткой, прессованием, ковкой, штамповкой, волочением и т. п.), имеют различные механические свойства. При этом наибольшее увеличение предела прочности и текучести с пониженным значением удлинения получаются у изделий, прессованных вдоль волокна. Это явление получило название пресс-эффекта .  [c.54]


Среди многокомпонентных сплавов можно выделить сплавы системы А1—Си—Mg (дюрали), например Д16 и Д1, сплав авиль, отличающийся от дюралей механизмом упрочнения, высокопрочные алюминиевые сплавы, содержащие цинк (В93, В95), алюминиевые сплавы для ковки и штамповки (АК6 и АК8) и жаропрочные сплавы типа АК4-1. Сплавы типа А1—Си—Mg применяются в основном в естественно состаренном состоянии, а сплавы А1—Mg—Zn А1—Mg—Zn—Си — после искусственного старения [Л. 40].  [c.56]

В ряде случаев литейные алюминиевые сплавы представляют определенный интерес для использования при низких температурах, поскольку из них могут быть изготовлены разнообразные детали сложной формы. Например, детали, которые слишком дорого изготавливать механической обработкой или свободной ковкой или штамповкой, можно было бы с успехом заменить литыми.  [c.191]

Алюминиевый сплав АК6 (А1 Си 1,8—2,6 Mg 0,4—0,8 Мп 0,4— 0,8 Si 0,7—1,2) [ГОСТ 4784—74]. Поковки, штамповки, прутки  [c.9]

В общем случае коррозионные трещины в промыщленных высокопрочных алюминиевых сплавах, развивающиеся в направлениях ВД и ВП, не ветвятся. То же наблюдается в штамповках, если развитие трещины совпадает с четко выраженным направлением течения металла. Образование макроскопических ответвлений возможно в структуре с равноосным  [c.183]

Рис. 48, Влияние коэффициента интенсивности напряжений на скорость роста трещины в высокопрочном алюминиевом сплаве 7175-Т66 (штамповка ориентация трещины ВД по плоскости сечения температура испытания 23 С) при испытаниях в различных средах Рис. 48, Влияние <a href="/info/20359">коэффициента интенсивности напряжений</a> на <a href="/info/34435">скорость роста трещины</a> в <a href="/info/626652">высокопрочном алюминиевом сплаве</a> 7175-Т66 (штамповка ориентация трещины ВД по <a href="/info/240462">плоскости сечения</a> <a href="/info/28878">температура испытания</a> 23 С) при испытаниях в различных средах
Области применения материалов САП и САС. Из материалов САП-1 и САП-2 освоено производство тех же полуфабрикатов, что и из обычных алюминиевых сплавов (листы, профили, штамповки, фольга, трубы). Максимальный вес прессованного полуфабриката составляет 300—400 кг. Листы изготовляют толщиной 0,8—  [c.112]

В последнее время в СССР и в ряде зарубежных стран получил распространение технологически простой способ изготовления вкладышей штамповкой из предварительно прокатанной биметаллической полосы или ленты, одним из слоев которых является алюминиевый сплав, а другим (основанием) —сталь или другой высокопрочный сплав. Этот способ нашел широкое применение при массовом производстве вкладышей, главным образом в автомобильной и тракторной промышленности.  [c.113]

Швы паяные — Прочность 259 Штамповки из алюминиевых порошков спеченных 105, 106  [c.304]

Штамповки из сплавов алюминиевых деформируемых — Выбор марки сплава 75, 76  [c.304]

Алюминиевые антифрикционные сплавы (ГОСТ 14113—78) предназначаются для изготовления литых монометаллических и биметаллических подшипников и биметаллических лент (и полос) методом прокатки с последующей штамповкой из них вкладышей. Марки, состав и свойства сплавов приведены в табл. 1.  [c.214]

Благодаря переходу из хрупкого состояния в вязкое небольшой нагрев молибдена улучшает его штампуемость. В литературе имеются сведения, что подогрев молибдена на 300—400° С позволяет при листовой штамповке осуществлять такие же деформации, как и при холодной штамповке алюминиевых сплавов 132].  [c.141]

Штамповки алюминиевые — Формы отверстий  [c.350]

В табл. 37 приведены типичные составы основных деформируемых алюминиевых сплавов. Из этих сплавов изготовляются различные полуфабрикаты путем прокатки, прессования, волочения, ковки и штамповки (или комбинированием этих технологических процессов).  [c.164]

Алюминпевые трубы 3—,159 1—24 Алюминиевые штамповки 3—460 Алюминиевый лист 2—90  [c.496]

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. К деформируемым алюминиевым сплавам, не упрочняемым термической обработкой, относятся сплавы системы А1—Мп (AiMh), содержащие до 1,6 % Мп, и сплавы системы А1—Mg (ЛМг), содержащие до 5,8 % Mg. Эти сплавы обладают высокой пластичностью и невысокой прочностью.  [c.17]


В деформированном виде сплав ЦАМ9,5-1,5 используют для получения биметаллических полос со сталью и алюминиевыми сплавами методом проката и последующей штамповки вкладыша.  [c.359]

Ковочные алюминиевые сплавы отличаются высокой пластичностью при температурах ковки и штамповки (450...475 °С) и удовлетаорнгель-ными литейными свойствами. Закалка проводится при 515-525 °С с охлаждением в воде, старение при 150...160 С в течение 4. 12ч. Упрочняющими фазами являются Mg2Si, uAli  [c.120]

При штамповке в штампах для выдавливания (рис. 5.15) расход металла на изготовление поковок снижается (до 30%), поковки получаются точные, максимально приближающиеся по форме и размерам к готовым деталям, производительность труда при механической обработке увеличивается в 1,5...2,0 раза. Поковки имеют высокое качество поверхности, плотную микроструктуру. Точность размеров достигает 12-го квалитета. Однако требуются тщательная подготовка исходных заготовок под штамповку, высокая точность изготовления и наладки штампов, использование специальных смазок. Этим способом получают заготовки из углеродистых и легированных сталей, алюминиевых, медных и титановых сплавов. Широкое применение сдерживается высокими удельными усилиями деформирования, большими энергозатратами и низкой стойкост1,ю штампов.  [c.109]

В купале удачно соединяются свойства легкого металла и меди. Он выдерживает разнообразные технологические операции штамповку, изгибание, пайку, шлифование, полирование. Преимуществом купаля в этом отношении является возможность пайки со стороны меди обычным оловянистым припоем, чем избегается ряд трудностей, связанных с применением алюминия для замены им тяжелых металлов. Наличие в специальных алюминиевых припоях некоторого количества тяжелых металлов ведет к образованию микроэлементов и появлению коррозии.  [c.623]

Алюминиевые сплавы для ковки и штамповки (АК6, АК8) отличаются высокими пластическими и литейными свойствами. Упрочняющие фазы у этих сплавов Mg2Si и Ala uMgSi.  [c.64]

Межцеховой контроль заготовки и детали проходят при выходе из каждого цеха. В отличие от входного меж. цеховой контроль проводится не по плавкам, а по техно-логичесшм партиям или садкам. При большом сортаменте алюминиевых сплавов в производстве это создает значительные трудности в использовании приборов ИЭ-1. Однако за счет того, что каждая заготовка проходит межцеховой контроль 2—3 раза, надежность контроля остается достаточно высокой. Ведь каждый последующий контроль не является копией предыдущего, а проводится на новой ступени технологического процесса обработки деталей. Материалы, проходящие нагрев, штамповку, ковку и термическую обработку, контролируются после каждой из этих операций. На каждой ступени обработки  [c.92]

Создание в последнее время свариваемых коррозионно-устойчивых алюминиевых сплавов привело к резкому расширению их применения в кораблестроении при изготовлении корпусов, надстроек, трубопроводов и др. Требованиям кораблестроения лучше всего удовлетворяют А] — Mg-сплавы. Рекомендуется применять сплавы с содержанием магния до 6%. При более высоком его содержании коррозионная устойчивость сплава понижается. Поэтому в настоящее время находят применение сплавы АМг5 и АМг61. Кроме А1 — Mg-сплавов используются также сплавы АД1 и АМц. Они обладают высокой коррозионной устойчивостью и пластичностью, но имеют низкие прочностные показатели. Из алюминия марки АД1 изделия изготавливают методом холодной штамповки. Сплав АМгЗ с повышенным содержанием кремния пригоден для изготовления конструкций, работающих при температурах до 150°С. Коррозионная устойчивость несвариваемого сплава Д16 в морской воде неудовлетворительна. Требованиям кораблестроения по коррозионной устойчивости в морской воде удовлетворяют и сплавы типа авиаль.  [c.126]

Хотя минимальные свойства для крупногабаритных полуфабрикатов были немного ниже, в двух последних программах [140, 181—186а] общие задачи похожи на изложенные выше. Направления работ сводятся к следующему. Требуется разработать высокопрочный для общих целей штамповочный алюминиевый сплав. Сплав должен поддаваться обработке при использовании современных методов промышленной технологии и термообработки и при этом должен иметь следующие минимальные значения свойств 1) предел текучести (0,2%) в долевом направлении 514 МПа на плите толщиной 75 мм 2) то же, на штамповке толщиной 200 мм—450 МПа 3) пороговый уровень напряжений в высотном направлении 310 МПа (при переменном погружении в раствор  [c.267]

Некоторые меры защиты, такие как дробеструйная обработка и нанесение покрытий, способствуют значительному замедлению КР однако они не исключают необходимости разработки сплавов, стойких к КР. Возможна следующая последовательность стадий, приводящая к разрушению полностью защищенной детали (рис. 143). Механическое разрушение может вызвать потерю защиты анодного слоя, грунта и верхнего покрытия, таким образом среда достигает нагартованного дробеструйной обработкой слоя. В соответствующих условиях пнттинговая коррозия может привести к сквозному в нагартованном слое поражению, способствующему зарождению КР в нестойком материале в присутствии растягивающих напряжений. Следует остановиться на требованиях в инструкциях воздушных сил США, согласно которым штамповки и прессованные алюминиевые материалы, применяемые в авиации в коррозионных средах, необходимо подвергать предварительно испытаниям в течение 2000 ч при переменном погружении без защиты в коррозионную среду. Окончательная механическая обработка должна гарантировать отсутствие высоких остаточных поверхностных напряжений растяжения [252 а]. Лучшим путем исключения требований, связанных с проведением таких испытаний, является применение стойких к КР материалов.  [c.310]


Важнейшей технологической тенденцией развития подшипников является централизованное изготовление вкладышей методами массового производства штамповкой из ленты, на которую антифрикционный материал нанесен заливкой (баббиты), заливкой илн спеканием норояхков на ленте (бронзы) или совместной прокаткой (алюминиевые сплавы).  [c.63]

Намеченное первым пятилетним планом развитие старых производств и организация новых отраслей промышленности — авиационной, автомобильной, сельскохозяйственного машиностроения и других — укрепили и стимулировали развитие технологии ковки и штамповки в металлообрабатывающей промышленности. Номенклатура материалов, обрабатываемых в кузнечных цехах, стала расширяться, главным образом за счет внедрения новых марок конструкционной хромоникелевой стали для производства деталей авиационных двигателей. Наметившийся переход от деревянной конструкции самолетов к металлической выдвинул проблему обеспечения производства самолетов соответствующим металлом. Примерно в 1922 г. появился впервые выпущенный Кольчугинским заводом новый легкий силав на алюминиевой основе — дуралюмин, обрабатываемый давлением. Первые попытки освоения дуралюмина для горячей ковки и штамповки начались в 192G г., а опробование ковки и штамповки простых деталей в заводских условиях — в 1928 г. В 1926 г. появился новый более легкий магниевый сплав, обрабатываемый давлением.  [c.106]

Наряду с освоением обработки давлением жаропрочных сплавов и тугоплавких металлов внедрялась плоскостная горячая нЕтамновка крупногабаритных деталей тина панелей из алюминиевых сплавов длиной 7—8 м и более. Технология их обработки развивалась по двум направлениям по методу обычной и секционной штамповки на гидравлических прессах и методу прессования на горизонтальных гидравлических прессах плоских заготовок и трубных заготовок с оребрением и носледуюш,ей их разверткой в плоскую деталь.  [c.111]

Основными частями автомата являются разливочный ротор 1 с приемнораспределительным резервуаром 2, на котором установлены наполнительные патроны 2 бобина с прессовой колонкой для штамповки алюминиевых колпачков и спускным желобом для установки их на горлышки бутылок укупорочный ротор 4 с обжимными патронами пластинчатый транспортер 6, огибающий рабочие узлы и дистанционные направляющие звездочки 16, 7, 8, 5, 10, 13, 14] поплавковый клапанный регулятор прямого действия 15, регулирующий уровень молока в резервуаре вакуум-насос 3, расположенный внутри станины привод машины.  [c.43]

Штамповка выдавливанием без заусенца (экстрю-динг-процесс) Диаметр примерно до 200 мм Толщина стенки для алюминиевых сплавов от 1,5 мм Простые 0,2—0,5 Гладкая То же То же  [c.335]

Все быстрее движутся детали современных машин, развивая тысячи и десятки тысяч оборотов в минуту и, следова-TeifbHO, порождая громадные силы инерции. И чем тяжелее материал детали, тем больше величина этих сил. Как же облегчить детали Нужно использовать новые, легкие и достаточно прочные алюминиевые сплавы Ал и Ак . Марка Ал предназначена для отливки деталей, а марка Ак — для получения их ковкой, штамповкой и прессованием.  [c.155]

Изготовление вкладышей больших размеров связано с применением процессов заливки алюминиевых сплавов по стальному основанию. Эти процессы технологически достаточно сложны, поэтому крупногабаритные подшипники часто изготовляют из биметаллов, одним из слоев в которых является конструкционный алюминиевый сплав. Так, например, для толстостенных вкладышей применяется биметалл с дуралюминиевым основанием или другим прочным алюминиевым сплавом, Такие вкладыши или втулки получаются литейным способом или путем изготовления труб, а в случае разрезных вкладышей — прокаткой полосы или листа с последующей штамповкой вкладышей.  [c.113]

Выталкиватели для неглубоких отверстий, матрицы, различные вставки, инструмент для штамповки труднодеформируе-мых материалов, базовые детали штампов, прессформы для литья под давлением алюминиевых сплавов  [c.364]


Смотреть страницы где упоминается термин Алюминиевые штамповки : [c.11]    [c.566]    [c.330]    [c.319]    [c.196]    [c.217]    [c.274]    [c.128]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.460 ]



ПОИСК



Алюминиевые сплавы дли поковок и штамповок

Алюминиевые штамповки - Формы отверсти

Алюминиевые, магниевые и медные сплавы, применяемые для ковки и горячей штамповки

Сплавы алюминиевые — Ковка и штамповка горячая — Температурные интервалы

Штамповка Оборудование алюминиевых сплавов

Штамповка горячая на ГКМ — Штамповочные уклоны и радиусы закруглени из алюминиевых, магниевых и титановых

Штамповка сплавов алюминиевых — Температура

Штамповки 290—292 — Допуски 297 — Калибровк из алюминиевых сплаво

Штамповки из алюминиевых порошков

Штамповки из алюминиевых порошков спеченных

Штамповки из сплавов алюминиевых

Штамповки из сплавов алюминиевых деформируемых — Выбор марки сплава

Штамповки из сплавов алюминиевых деформируемых — Механические свойства

Штамповки, дефектоскопии алюминиевые



© 2025 Mash-xxl.info Реклама на сайте