Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Струя закрученная

В некоторых литературных источниках [15, 34-40, 112, 116] сопловые устройства формирования закрученной струи называют завихрителями. Такое название соплового ввода, формирующего закрученный поток, вносит некоторую двусмысленность, связанную с завихренностью турбулентных течений. Изучение закрученных течений, особенно при достаточно высоких степенях закрутки, неразрывно связано с необходимостью изучения микроструктуры течения, а следовательно, и с завихренностью. Поэтому, когда речь идет о техническом аппарате, устройстве, использующем закрученные потоки, более оправдано употребление терминов устройство формирования закрученной струи (закручивающее устройство) или просто сопловой ввод.  [c.11]


Сопловой ввод с АЛ-закручивающим устройством позволяет варьировать интенсивность закрутки в широком диапазоне, поэтому его часто используют в устройствах, предназначенных для экспериментального исследования закрученных потоков. Однако существует менее простое альтернативное решение, использующее два подвода в канал — осевой и тангенциальный, позволяющие получить достаточно устойчивый однородный поток. Количество подаваемого газа или жидкости в осевом и тангенциальном направлениях можно регулировать и изменять независимо друг от друга. Это позволяет варьировать закрутку от нулевой до очень высокой, при которой формируется интенсивно закрученная струя с развитой приосевой зоной обратных токов, такая же как при использовании тангенциально-щелевого закручивающего устройства (рис. 1.2,<з).  [c.14]

В отличие от прямоточной закрученная струя практически всегда трехмерна. Вектор скорости V имеет три компоненты радиальную аксиальную, или осевую и тангенциальную Кроме того в закрученных струях всегда имеются радиальный и осевой градиенты давления, а также достаточно сложный характер распределения полной и термодинамической температуры, во многом определяемый конструктивными особенностями устройства, по проточной части которого движется поток. Все многообразие закрученных потоков целесообразно разбить на две группы свободно затопленные,струи различной степени закрутки офаниченные закрученные потоки, протекающие по каналам различной конфигурации.  [c.20]

Предложенная выше классификация не всегда оправдывается, так как характер течения закрученной струи вниз по потоку от закручивающего устройства зависит от его конструктивных особенностей, которые могут привести к существенному изменению профиля скорости в поперечном сечении (рис. 1.5).  [c.21]

Течение в закрученных потоках существенно необратимо, причем необратимость увеличивается с ростом интенсивности закрутки. Часть запаса полной энтальпии, имеющейся у газа на входе в закручивающее устройство, расходуется на преодоление трения, другая — на генерацию турбулентных пульсаций и перестройку течения в процессе продвижения по каналу и за его пределами для случая свободно затопленной струи. В [62] вводится параметр v, который предложено называть коэффициентом потока кинетической энергии кольцевого закрученного потока. Такие течения наиболее часто формируются во фронтовых устрой-  [c.24]

В закрученном потоке могут существовать значительные градиенты осевой составляющей скорости. В вихревой трубе такое состояние движения имеет наиболее ярко выраженный характер вследствие наличия интенсивного противотока. С этой точки зрения приосевой вихрь можно рассматривать как осесимметричную струю, втекающую в поток с несколько отличной плотностью, и, естественно, ожидать эффекты, которые наблюдаются в слое смешения такой струи [18]. Как показано в работе [20], в слое смешения развиваются когерентные вихревые структуры с детерминированной интенсивностью и динамикой распространения. Так, в частности, при движении вниз по потоку расстояние между соседними вихрями увеличивается, что приводит к уменьшению частоты их обнаружения. Очевидно, в этом случае должна иметь место связь таких структур с высокочастотной неустойчивостью в вихревых трубах.  [c.117]


Вихревые горелочные устройства с запуском на основе самовоспламенения могут быть использованы для организации аэродинамической стабилизации фронта пламени на стержневых вдуваемых радиально интенсивно закрученных струях — огневых жгутах факела продуктов сгорания [162, 177, 191]. Одно из свойств вихревых горелок — устойчивость вихревого огневого жгута — факела продуктов сгорания (рис. 7.21, 7.22) может быть с успехом использовано в энергетике для пуска топочных устройств различных агрегатов, в том числе и для запуска камер сгорания ГТУ. В экспериментах длина огневого жгута составляла 1,5—2 м при габаритах воспламенителя 070, длине 150 мм, давлении сжатого воздуха 0,6 МПа, температуре на входе 293 К, расходе сжатого воздуха 15 г/с и коэффициенте избытка воздуха а = 2.  [c.332]

Анализ взаимодействия закрученной струи со сносящим потоком на основе метода баланса действующих сил может быть осуществлен в системе координат xyz с началом отсчета в центре сопла, формирующего струю (рис. 7.34). Плоскость xOt образует поверхность вдува, над которой распространяется основной поток с плотностью и равномерным профилем скорости V. Закрученная струя истекает из сопла диаметром под углом к направлению основного потока. Закрутку струи будем характеризовать циркуляцией вектора скорости Г по ее границе.  [c.360]

Рис.7.34. Расчетная схе.ма закрученной струи в сносящем потоке Рис.7.34. Расчетная схе.ма <a href="/info/146023">закрученной струи</a> в сносящем потоке
Интегрирование системы уравнений (7.38, 7.41—7.44) позволяет рассчитать координаты оси закрученной струи в сносящем потоке. Отметим, что вспомогательная система координат приводится к основной координатной системе xyz последовательным поворотом относительно трех осей.  [c.363]

Измерения поля скорости показаны на рис. 7.36,а,6 в виде проекций на секущие горизонтальные и вертикальные плоскости (система координат соответствует рис. 7.34). Как и в случае вдува незакрученной струи, в поперечном сечении наблюдается образование пары вихрей, закрученных в противоположные стороны. Один из вихрей (правый) по сути является самой закрученной струей, а второй (левый) сворачивается под действием набегающего потока и начинает развиваться непосредственно от кромки сопла. На горизонтальных сечениях поля скорости заметна асимметрия распределения, обусловленная закруткой вдуваемой струи. В центральной части имеется значительное (до  [c.363]

Рис. 7.35. К расчету траектории закрученной струи Рис. 7.35. К расчету траектории закрученной струи
Таким образом, при взаимодействии закрученной струи со сносящим потоком реализуется сложное пространственное распределение скорости и давления. Результаты измерений и визуализации выявили различия в структуре течения и характере распространения закрученных и незакрученных струй и подтвердили целесообразность использования закрученных радиально вдуваемых стержневых струй — факела продуктов сгорания в вихревой горелке для стабилизации фронта пламени в прямоточных камерах сгорания преимущественно форсажного типа.  [c.365]

Интегральные параметры закрутки Ф и I2 характеризуют отношение вращательного количества движения к осевой проекции полного количества движения потока в масштабе Е. Они обычно используются для характеристики неограниченных закрученных струй [60], где интеграл и его продольный градиент играют важную роль в формировании структуры потока.  [c.14]


Винты, применяемые при испытаниях, обычно бывают толкающими во избежание ошибок при определении крутящего момента вследствие действия на балансирную систему и двигатель закрученных струй воздуха от винта.  [c.372]

Возврат продуктов горения к корню факела часто осуществляется инжекцией поступающей струи. Во многих случаях обратный ток достигается закруткой поступающего воздуха лопаточным регистром или тангенциальным подводом. В центре закрученной струи создается разрежение, вызывающее появление обратных токов. В некоторых топочных устройствах применяются специальные стабилизаторы в виде поставленных на пути потока плохо обтекаемых тел. В кормовой зоне таких тел всегда имеется зона рециркуляции, обуславливающая стабилизацию горения.  [c.219]

При небольших нагрузках воздух засасывается под разрежением топки. Он может быть подогрет, что интенсифицирует горение. Избытки воздуха 1,15—1,3. Неполнота сгорания 0,5 — 2%. Тепловая мощность практически не ограничена. Длина пламени регулируется. Для сокращения ее —подача газа периферийно мелкими струями поперек движению сильно закрученного воздуха. Легко комбинируются с мазутными и пылеугольными горелками. Широко применяются в паровых котлах, печах нагревательных, методических, туннельных, вращающихся (для керамзита), в сушильных установках, если нужна небольшая длина факела (в среднем до 2 м). Малошумны  [c.62]

Дальнобойность струй, вытекающих из разных по форме сечений насадок, оказалась одинаковой, что, вероятно, следует объяснить быстрым превращением исследованных струй в круглые, и поэтому различие в их поведении лежало за пределами точности опытов. Меньшая дальнобойность свойственна закрученным свободным струям.  [c.58]

Полученные результаты показывают, что известный феномен несуп] ествования автомодельного решения для струи (закрученной или нет), вытекаюгцей из точечного отверстия в плоской стенке с условиями прилипания на плоскости и регулярности на оси, не может быть преодолен за счет введения переменной турбулентной вязкости, удовлетворяющей естественным физическим требованиям.  [c.158]

Кроме того, можно отметить, что если по каким-либо причинам поток перед плоской решеткой закручен, то это закручивание при прохождении жидкости через решетку не будет устранено н сохранится в сечениях за решеткой (рис. 3.8). Вместе с тем струя при набегании на решетку будет растекаться, так что ее поступательные скорости за решеткой соответственно понизятся. Причиной закручивания потока может быть не только несимметричное расположение входного отверстия в аппарате, но и не-си.мметричный профиль скорости струи на входе, даже при симметричном расположении входа относительно осн аппарата. В случае несимметричного профиля скорости равнодействующая динамических сил струи находится не на оси, а в зоне больших скоростей. Поэтому создается вращательный момент, закручивающий струю по направлению от больших скоростей к меньшим.  [c.86]

Одной из достаточно важных характеристик закрученных течений являются наличие и размеры в поперечном направлении зоны обратных токов — рециркуляционной зоны, которая возникает в приосевой зоне для струйных течений с достаточно высокой интенсивностью закрутки S > 0,4. При этом возросший радиальный фадиент давления обусловливает заметный рост поперечных размеров струи и снижение осевой составляющей скорости по сравнению с прямоточной струей, что совместно с при-осевым тороидальным вихревым потоком рециркуляционной зоны ифает достаточно важную роль при решении прикладных задач в процессах горения и стабилизации пламени в камерах сгорания.  [c.25]

Вопрос о числе сопловых вводов до конца не решен. При односопловом вводе в сопловом сечении вихревой трубы наблюдается явно выраженная радиальная неравномерность полей скоростей и давлений, вызванная конечными размерами высоты вводимого закрученного потока. Чем тоньше толщина вводимого тангенциального слоя, тем выше равномерность. Многосопловой ввод при сохранении основных рекомендаций, полученных опытным путем, целесообразен. Особенно это полезно для тр -б сравнительно большого диаметра d>40 мм, где сложность изготовления не вносит ощутимых погрешностей, приводящих к ухудшению характеристик. Для обычных спиральных сопел прямоугольного профиля отношение высоты сопла к его ширине составляет h Ь = I 2, что позволяет ввести поток в канал в виде узкой по высоте струи.  [c.71]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

Возможность стабилизации фронта пламени на радиально в1дуваемых интенсивно закрученных стержневых струях  [c.359]


Поперечный вдув струй в сносящий поток представляет практический интерес в связи с разнообразными приложениями, начиная от разбавления продуктов сгорания воздухом в камерах сгорания (КС) газовых турбин и заканчивая аэродинамикой реактивной струи при переходе самолета вертикального или укороченного взлета и посадки с режима подъема на крейсерский режим. При вдуве струи в сносящий поток наблюдается сложная картина течения [1, 87]. Поперечное сечение струи принимает почкообразную форму и состоит из двух вихрей, закрученных в противоположные стороны. Основной поток, обтекая струю, формирует зону обратных токов. Возникающие зоны возвратных течений могут быть использованы для стабилизации фронта пламени в прямоточных КС авиационных двигателей. Генератором стабилизирующей струи служит вихревой воспламенитель [141] (см. п.7.1). Преимущества этих систем — высокая надежность запуска и устойчивая работа в щироком диапазоне изменения физических и климатических условий. В этом случае стабилизация осуществляется на высокотемпературном факеле — закрученном потоке продуктов сгорания, истекающих из сопла-диафрагмы с трансзвуковой скоростью, что может быть использовано для воспламенения сносящего потока топливо-воздушной смеси. При  [c.359]

Исследования вдува в сносящий поток в основном посвящены незакрученным струям [1,87]. Методами визуализации и непосредственных измерений хорощо изучена картина течения, положение скоростной и температурной оси струи в сносящем потоке. Построены полуэмпирические модели, удовлетворительно описывающие траекторию струи, изменение ее формы и количество эжектируемого в струю гдза. Однако для случая вдува закрученной струи, обладающей большей интенсивностью массообме-на, исследования не столь полны [210]. В этой связи важной задачей является накопление и обобщение результатов экспериментальных исследований.  [c.360]

Закручивание газового потока осу1цествляется в завихрителях. Применяя завих-рители той или иной конструкции и изменяя их геометрические характеристики, можно получать различную степень закрутки потока и режимы течения закрученной струи в рабочей зоне (зоне контакта).  [c.277]

Диффузионное горение газа в турбулентном потоке характеризуется более сложным механизмом горения по сравлению с ламинарным. Сильное влияние на длину факела оказывает закручивание струи газа и воздуха и угол встречи этих струй. Меняя эти параметры, можно управлять длиной факела в очень широких пределах. Благодаря преимуществам закрученного потока обеспечивается хорошее смесеобразование и интенсивное горение.  [c.235]

Хорошую организацию сжигания твердых топлив (особенно трудно-сжигаемых, с малым выходом летучих) обеспечивает использование так называемых улиточных горелок (рис. 17.11). Угольная пыль с первичным воздухом подается в них через центральную трубу и благодаря наличию рассекателя выходит в топку в виде тонкой кольцевой струи. Вторичный воздух подается через улитку , сильно закручивается в ней и, выходя в топку, создает мощный турбулентный закрученный факел, который обеспечивает подсос больших количеств раскаленных газов из ядер факела к устью горелки. Это ускоряет прог ев смеси топлива с первичным воздухом и ее воспламенение, т. е. создает хорошую стабилизацию факела. Вторичный воздух хорошо перемешивается с уже воспламенившейся пылью благодаря сильной его турбулиза-ции. Наиболее крупные пылинки догорают в процессе их полета в потоке газов в пределах топочного объема.  [c.158]

Схематическое изображение центробежной форсунки дано на рис. 8-16. Жидкость вводится в камеру форсунки таигенциально, вследствие чего поток закручивается. Прожимное отверстие находится в торцевой стенке форсунки. При выходе закрученной струи из форсунки действие центростремительных сил от твердых стенок прекращается и струя в результате нестационарных колеба-баний распадается. При этом капли разлетаются по прямолинейным лучам, касательным к цилиндрическим поверхностям, соосным с выходным соплом форсунки (рис. 8-17).  [c.237]

По длине конического канала происходит возрастание осевой, вращательной и суммарной скоростей потока. Это приводит к дальнейшему уменьшению е , при этом на относительно коротком участке интенсивность продольных пульсаций в периферийной области уменьшается в 3...4 раза, а в приосетой — в 2... раза (см. рис. 4.12, б, в, г), Возрастание пульсаций в области г < 0,25 (ЗГ = 1,025) обусловлено образованием зоны обратных течений у выхода из конического канала вследствие расширения закрученной струи.  [c.87]

Использование модели длины пути перемешивания в более сложных случаях является затруднительным. Во-первых, эмпирические константы, входящие в эту модель, оказьшаются не столь универсальными как для осевых течений во-вторых, в некоторых случаях при расчетах необходимо иметь сведения о турбулентной структуре закрученного потока. В связи с зтим в последние годы получили распространение усложненные полу-эмпирические методы, основанные на решении уравнений осред-ненного и пульсационного движений в совокупности с гипотезами полуэмпирического характера. Использование этих моделей для расчета свободных течений с поперечным сдвигом, потоков в кольцевых и криволинейных каналах, в циклонад, в закрученных струях дает удовлетворительные результаты [47].  [c.116]

Л о й ц я н с к и й Л. Г., Распределение закрученной струи в безграничном пространстве, заполненном той же жидкостью, Прикладная математика и механика, Изв. АН СССР, 1953, XVII, вып. 1.  [c.258]


Смотреть страницы где упоминается термин Струя закрученная : [c.8]    [c.21]    [c.36]    [c.161]    [c.362]    [c.363]    [c.275]    [c.116]    [c.195]    [c.51]    [c.168]    [c.152]    [c.103]    [c.84]    [c.173]    [c.401]    [c.194]   
Механика жидкости и газа (1978) -- [ c.510 ]

Механика жидкости и газа Издание3 (1970) -- [ c.715 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Возможность стабилизации фронта пламени на радиально вдуваемых интенсивно закрученных стержневых струях

Неавтомодельные закрученные струп. Тепловая задача для неавтомодельных затопленных струй

Прпосевой обратный ток для закрученной струи

Распространение струи круглой ламинарной закрученной

Струя

Струя ламинарная закрученная



© 2025 Mash-xxl.info Реклама на сайте