Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства при длительных статических нагрузках

Механические свойства при длительных статических нагрузках  [c.33]

Например, вопросы жаропрочности относятся и к гл. 6 (влияние температуры), и к гл. 19 (свойства при длительных статических нагрузках), и к гл. 22. Влияние масштабного фактора рассмотрено и в специальной главе, и в ряде глав по отдельным механическим характеристикам. То же можно сказать о статистических теориях и методах. Хрупкое разрушение в той или иной степени рассмотрено в главах 4, 11, 18, 20 и в др.  [c.20]


Следует различать две основные группы механических свойств сопротивление пластической деформации при длительных статических нагрузках (определение пределов ползучести) сопротивление разрушению (длительная прочность) и пластичность при длительных статических нагрузках.  [c.33]

Изучение влияния агрессивных сред (металлических расплавов, продуктов сгорания, морской воды и др.) на механические свойства конструкционных материалов при длительных статических и повторно-переменных нагрузках в условиях нормальных и высоких температур с целью выявить эффект разупрочнения материалов, обусловленный влиянием среды, а также выбрать оптимальные защитные покрытия исследуемого материала.  [c.745]

I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]

В результате исследований малоцикловой усталости жаропрочных и коррозионно-стойких сталей при неизотермическом нагружении в диапазоне переменных температур 100. .. 700 °С показано, что предельное состояние определяется параметрами термомеханического нагружения (максимальной температурой, формой циклов нагрузки и температуры, длительностью выдержки при экстремальных значениях нагрузки и температуры), а также механическими свойствами применяемых материалов (пределами статической и длительной прочности, деформационной способностью) в рассматриваемом диапазоне температур.  [c.28]


Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Из рассмотренных выше влияний времени на механические свойства материалов наибольшее значение для расчета на прочность большинства деталей машин, конструкций и сооружений, находящихся в условиях статического нагружения, имеют ползучесть и длительная прочность. При этом для учета явлений длительной прочности, за отсутствием систематизированных данных, пользуются эмпирическими формулами и правилами, выведенными на основе специализированных испытаний. Явление релаксации в чистом виде не встречается, и, как правило, это явление имеет малое значение по сравнению с явлением ползучести. В большинстве случаев на детали машин и конструкций действуют определенные нагрузки, а кинематические связи, наложенные на эти детали, обычно таковы, что преобладающими оказываются явления ползучести и течения с некоторой скоростью деформации.  [c.232]

Лабораторные испытания паяных соединений проводят при отработке технологии пайки, контроле механических свойств паяных изделий, при разработке новых припоев. В зависимости от степени ответственности паяемых изделий проводят лабораторные испытания отдельных узлов или полностью изделий в условиях, имитирующих эксплуатационные нагрузки. Особо ответственные паяные конструкции подвергают натурным испытаниям в условиях эксплуатации. При работе паяного соединения в конструкции в нем могут возникнуть напряжения растяжения, сжатия, сдвига и сложные напряженные состояния, когда одновременно возникают напряжения различного вида. Для паяных соединений наибольшее распространение получили испытания на срез и на отрыв. При проведении механических испытаний различают кратковременные статические испытания, длительные статические испытания, динамические испытания при ударных нагрузках, испытания на усталость.  [c.218]

Ниже будет рассмотрено наводороживание стали как металла основы при хромировании, никелировании, цинковании, кадмировании и меднении. Наводороживание изучалось в основном путем определения изменения механических свойств металла (временный предел прочности на разрыв при растяжении ств, относительное удлинение 65, относительное сужение 1 з, предел длительной-прочности при статической нагрузке Одл, предел выносливости при знакопеременной циклической. нагрузке 6 i и др.). В небольшом числе работ производилось также определение количества поглощенного водорода и делалась попытка установления связи между концентрацией водорода в стали и снижением ее механических свойств.  [c.256]

Значительное ухудшение механических свойств в результате наводороживания приводит к возникновению так называемой водородной хрупкости стали (см. также часть вторую настоящей книги). При кратковременном действии статической нагрузки, водородная хрупкость проявляется в снижении показателей пластичности металла и сопротивления разрыву. При длительном действии статической нагрузки у наводороженного металла отмечается снижение длительной прочности и замедленное разрушение (статическая водородная усталость), а в случае действия циклической нагрузки — снижение выносливости стали (циклическая водородная усталость) [29]. Кроме того, при возникновении огромных давлений газообразного водорода во внутренних полостях металла наводороживание может вызвать разрушение стали и при отсутствии внешней нагрузки.  [c.47]


Мрамор в электротехнике применяется главным образом для распределительных щитов и досок, оснований рубильников и переключателей и т. п. при рабочих напряжениях до 500 В. Он имеет хороший внешний вид (в полированном состоянии), довольно высокую механическую прочность при статических нагрузках, негорюч. Мрамор устойчив к действию воды, щелочей, органических растворителей и масел (но масла, впитываясь в мрамор, дают портящие его внешний вид пятна). В то же время мрамор является довольно хрупким материалом и при сильных ударах или вибрациях может раскалываться он не кислотостоек(растворяется в кислотах, даже слабых, с выделением СОа кислотные пары и сернистый газ разъедают мрамор) мало стоек к резким сменам температуры (при этом возможно растрескивание растрескивание может иметь место и при охлаждении увлажненного мрамора до температуры замерзания воды) при увлажнении сильно снижает электроизоляционные свойства. Влагостойкость мрамора может быть существенно повышена пропиткой (парафином, битумом, серой, стиролом с последующей его полимеризацией и др.). На рис. 18-1 представлена зависимость удельного объемного сопротивления мрамора от времени выдержки в атмосфере 80% -ной относительной влажности. Однако при пропитке мрамора может быть ухудшен его внешний вид. Мрамор может длительно выдерживать температуру до 100—110° С (при более высокой температуре он становится весьма хрупким) и кратковременно—до 250° С. При нагреве мрамор получает остаточные деформации (рис. 18-2). Ряд параметров мрамора дан в табл. 18-1.  [c.265]

Уже в первой половине XIX века было замечено, что детали машин и сооружений при действующих длительное время циклических нагрузках могут разрушаться внезапно без заметных остаточных деформаций при значительно меньших напряжениях, чем разрушающие напряжения при статическом нагружении. Явление понижения прочности материала при динамических переменных во времени напряжениях было названо усталостью, или в ы н о с л и в о с т ь ю, материала. Не совсем удачное-наименование данного явления усталость материала , сохранившееся по настоящее время, не случайно. В начале изучен причин разрушения материала при циклических нагрузках была сделано предположение, что под влиянием длительно действующих переменных напряжений материал устает и его статическая прочность понижается. Однако опыты на статическое растяжение деталей, длительное время работавших при циклических нагрузках, показали, что механические свойства материала под действием переменных напряжений не изменяются. Не подтвердилось также предположение, что переменные напряжения изменяют структуру материала. Исследованием материала под микроскопом после воздействия циклических напряжений обнаружено, что структура его не изменяется.  [c.489]

Опыт показывает, что очень редко удается найти тесную связь между характеристиками механических свойств, определяемых на образцах, и службой деталей, в широких диапазонах охватывающих сразу значительное количество производства и методов нагружения. Разнообразие условий работы деталей требуют для оценки конструктивной прочности и различных характеристик механических свойств. В зависимости от характера действующих нагрузок механические испытания прежде всего следует разделить на 1) статические испытания при нормальных температурах или длительные статические испытания при повышенных температурах 2) ударные динамические испытания при различных температурах 3) испытания при повторных знакопостоянных или знакопеременных нагрузках при нормальных температурах.  [c.8]

Длительное статическое нагружение при высоких температурах оказывает сильное влияние на механические свойства металлов. Механические свойства, определяемые при длительных нагрузках, тесно связаны с внутренними превращениями, которые ускоряются одновременным влияние.м повышенной температуры и нагружения.  [c.33]

Ползучестью называют явление постепенной деформации металла, медленно происходящей при постояиной нагрузке. Тепловой хрупкостью называют явление уменьшения пластичности, определяемой по замеру деформации при нагружении металла под постоянной нагрузкой при высомих температурах. И в этом случае следует различать две основные группы механических свойств сопротивление пластической деформации при длительных стат1ических нагрузках (определение пределов ползучести) сопротивление разрушению (длительная прочность) и пластичность при длительных статических нагрузках.  [c.31]

Пружины, рессоры машины и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы кроме механических свойств, характерных для всех констрзтсдион-ных материалов (прочности, пластичности, вязкости, вьшосливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, а при длительном статическом или циклическом нагружении — релаксационной стойкостью.  [c.346]

Ввиду анизотропности и плохой теплопроводности наполненных пластмасс (особенно содержащих волокнистые наполнители) необходимо соблюдать определенные правила при их эксплуатации и механической обработке — применять охлаждающие смазки, пользоваться специальным инструментом и т. п. При обработке и эксплуатации деталей из слоистых пластиков нельзя прилагать нагрузки в сторону, способствующую расслаиванию или сдвигу листового наполнителя и т. д. Под влиянием длительных механических нагрузок в статических или динамических условиях происходит усталостное разрушение пластмасс. На усталостную прочность пластмасс (так же как и на другие их свойства) сильное влияние оказывают химическое строение полимера, природа и вид наполнителя и их количественное соотношение. Постоянно действующие (статические) нагрузки вызывают ползучесть пластмассовых деталей наиболее явно она проявляется у термообратимых пластиков (оргстекло и другие термопласты). В наименьшей степени ползучесть проявляется у стеклотекстолнтов, полученных с участием полимерных связующих термонеобратимого типа.  [c.390]


Если сравнивать характер убывания равномерного поперечного сужения (рис. 5.19, а) и сужения при окончательном разрушении (рис. 5.19, б), то видно, что интенсивность убывания со временем предельного равномерного сужения 1(35 ниже, чем остаточной пластичности в особенности при малых ресурсах (до 10 ч). При долговечностях более 10 ч падение остаточной пластичности ipit замедляется с увеличением времени нагружения. Причем так же, как и для других характеристик (оь, Оо.г). интенсивность изменения пластичностей грк и ipf, выше при нагружении с выдержками на экстремальных уровнях нагрузки (как с наложением нагрузки второй частоты, так и при отсутствии последней). Для структурных параметров Ша,, и. 4 0,2 относительный характер их изменения со временем сохраняется временные выдержки в большей мере интенсифицируют структурные изменения по сравнению с одночастотным и длительным статическим нагружениями. Определение этих структурных параметров по структурной характеристике dll хорошо согласуется с данными расчета по зависимостям (5.16)—(5.19). При этом следует отметить, что для А при больших долговечностях имеет место более сильно выраженная зависимость от времени. Однако надо иметь в виду, что принятый здесь метод экстраполяции dll на времена до 10 ч основан лишь на том, что зависимости (5.16)—(5.19) также предполагают монотонное изменение характеристик во времени, определяемых по механическим свойствам материала а0,2 и а -  [c.199]

Для определения механических свойств металлов и спла )в испытывают стандартные образцы. Механические испытания в зависимости от характера действия нагрузки могут быть статические, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время, динамические, при которых нагрузка на образец возрастает мгновенно, и повторно-переменные, при которых изменяются величина и направление действия нагрузки.  [c.94]

Из рассмотрения результатов испытаний видно, что длительность импульса тока оказывает незначительное влияние на прочность соединений. Так,статическая прочность на срез практически одинакова, при отрыве наблюдается некоторое повышение прочности у образцов, выполненных с большей длительностью тока. Прочность рабочих соединений образцов, выполненных на всех режимах, при динамических нагрузках практически одинакова у связующих соединений наблюдается снижение усталостной прочности при чрез.мерно мягком режиме (0,4 сек). Такие результаты можно объяснить следующим. Точечная сварка даже при мягких режимах характеризуется весьма кратковременным тепловым воздействиелМ на металл. В связи с этим наиболее резкое изменение механических свойств металла наблюдается лишь в литом ядре и значительно меньшее в околошовной зоне. Кристаллизация литого ядра происходит под действием усилия сжатия электродов как в случае жесткого, так и мягкого режимов, следовательно, имеем дело с метал-ло.м, имеющим практически одни и те же механические свойства. Этим можно объяснить одинаковые результаты при испытаниях на срез точек.  [c.192]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

При изготовлении и монтаже этих конструкций на специализированных заводах они подвергаются обработке сварке, резке, обработке резанием, правке, гибке, вальцовке. Как правило, термическая обработка не проводится. При этом сталь должна сопротивляться образованию трещин и должна сохранять структуру и механические свойства. Стальные конструкции длительное время при эксплуатации должны выдерживать статические, динамические и переменные нагрузки, часто при низких температурах. Стоимость стальных конструкций не должна бьггь высокой.  [c.155]

Белбор (композит 02) - кубический нитрид бора, используемый для спекания композита 02. Получается прямым переходом из ВЫг в аппаратах высокого давления при статическом приложении нагрузки (давление до 9 ГПа, температура до 3200 К). Отсутствие каталитических добавок позволяет получить более высокие по сравнению с эльбором-Р физико-механические характеристики, обеспечивает стабильность свойств белбора, а значит, и инструмента, при его длительном хранении.  [c.590]


Смотреть страницы где упоминается термин Механические свойства при длительных статических нагрузках : [c.116]    [c.250]    [c.353]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Механические свойства при длительных статических нагрузках

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Механические свойства при длительных статических нагрузках

Металловедение и термическая обработка  -> Механические свойства при длительных статических нагрузках


Металловедение и термическая обработка стали Т1 (1983) -- [ c.202 ]



ПОИСК



Механические нагрузки

Механические свойства при статических нагрузках

Нагрузка статическая



© 2025 Mash-xxl.info Реклама на сайте