Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уголь газовый

Уголь газовый (Донбасс)  [c.149]

При классификации каменных углей различают марки, классы и группы. Марки отличаются одна от другой выходом летучих и степенью спекаемости, характеризуемой толщиной пластического слоя у. Нижний предел величины у, выраженный в миллиметрах, ставят после индекса марки угля, например Г-6 означает уголь газовый с минимальной толщиной пластического слоя 6 мм.  [c.215]

Газовый кокс — Параметры 6—12 Газовый уголь — см. Уголь газовый Газогенераторные автобусы с задним расположением газогенераторов 11—228 Газогенераторные автомобили — см. Автомобили газогенераторные Газогенераторные автомобильные двигатели-— см. Двигатели автомобильные газогенераторные  [c.42]


Центральный угол газовой стороны, . . = тс  [c.90]

Уголь газовый марки Гр Кузнецкого бассейна..... 82,4 5,8 2,2 9,0 0,6  [c.146]

Каменный уголь газовый...... 1420 20-100 3,1-3.4  [c.190]

Каменный уголь газовый, рядовой 200 400  [c.94]

На ракете в месте выхода газов из сопла двигателя устанавливаются газовые рули из жароустойчивых материалов. Газовая струя действует на рули по тем же законам, что и аэродинамическая сила на воздушные рули. Газодинамическая сила руля создает относительно центра масс ракеты момент, который и поворачивает ракету на определенный угол. После поворота ракеты на заданный угол газовые рули возвращаются в нейтральное положение.  [c.108]

Известно, что газовые турбины требуют высококачественного топлива. Попытки использовать для них уголь оставались безуспешными из-за появления отложений солей щелочных металлов и абразивного действия золы на лопатки турбины. С развитием технологии низкотемпературного сжигания твердого топлива в псевдоожиженном слое стало возможным применение для газотурбинных установок (ГТУ) различных сортов углей. Это связано прежде всего с тем, что при сжигании топлива в псевдоожиженном слое в золе остается значительная часть солей щелочных металлов, а продукты сгорания после соответствующей очистки в двух-трех последовательно включенных циклонах не вызывают эрозии и коррозии лопаток турбины.  [c.15]

Рис. 1.12. Схема ПГУ с предварительной газификацией твердого топлива в псевдоожиженном слое дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—рециркуляция газа 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с псевдоожиженным слоем 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления твердых частиц 20 — газовая турбина 21 — котел-утилизатор 22 — паровая турбина 23 — электрогенератор 24 — уходящие газы Рис. 1.12. Схема ПГУ с предварительной газификацией <a href="/info/881">твердого топлива</a> в <a href="/info/5512">псевдоожиженном слое</a> дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—<a href="/info/73993">рециркуляция газа</a> 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с <a href="/info/5512">псевдоожиженным слоем</a> 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления <a href="/info/184030">твердых частиц</a> 20 — <a href="/info/884">газовая турбина</a> 21 — <a href="/info/30635">котел-утилизатор</a> 22 — <a href="/info/885">паровая турбина</a> 23 — электрогенератор 24 — уходящие газы

Трубная коническая резьба по ГОСТ 6211—81 (СТ СЭВ 1159-78). Профиль резьбы имеет угол 55°, вершины и впадины профиля закруглены. Эту резьбу применяют в вентилях и горловинах газовых баллонов. Возможно соединение труб, имеющих коническую резьбу с муфтами, имеющими цилиндрическую трубную резьбу.  [c.190]

Резьбу трубную коническую ГОСТ 6211 —81 (СТ СЭВ 1159—78) применяют в соединениях труб при больших давлениях и температуре, когда требуется повышенная герметичность соединения, например в горловинах газовых баллонов. Угол профиля — 55°, конусность — 1 16 (рис. 8.28).  [c.231]

Здесь м — фазовый угол, величина которого зависит от угловой частоты изменения электрического поля со и от свойств жидкости, окружаюш ей газовый пузырек Уд п 7 определяют соответственно стационарный и зависящий от времени вклады в скорость течения жидкости и имеют вид [100]  [c.278]

Питание постов газовой сварки и резки от ацетиленовых генераторов связано, с рядом неудобств, поэтому большое распространение получило питание ацетиленом от ацетиленовых баллонов. Ацетиленовые баллоны заполняют пористой массой (древесный уголь, пемза, инфузорная земля), образующей микрополости, необходимые для безопасного хранения ацетилена. Массу в баллоне пропитывают ацетоном (225—300 г на 1 дм вместимости баллона), в котором хорошо растворяется ацетилен. При нормальных условиях в одном объеме ацетона растворяется 23 объема ацетилена. Давление растворенного ацетилена в наполненном баллоне не должно превышать 1,9 МПа при 20°С. Для уменьшения потерь ацетона из баллона ацетилен необходимо отбирать со скоростью не более 1700 дм /ч.  [c.96]

Для дуг, горящих в газовой среде (Аг, Не), на тугоплавких катодах (уголь, вольфрам) каналовая модель, как правило, мало подходит. Это обусловлено конической и колоколообразной формой столба дуги и непостоянством температуры по его длине различной излучательной способностью газов, которая у гелия, например, весьма мала наличием плазменных струй и т. д.  [c.59]

Благодаря дисперсии показателя преломления угол О не равен нулю, и антистоксовы компоненты рассеяния имеют максимальную интенсивность вдоль образующих конуса с углом при вершине О. В конденсированных средах угол б равен нескольким градусам (для бензола О = 2,0°, для нитробензола б = 3,0° при использовании рубинового лазера). В газовых средах показатель преломления мало отличается от единицы, дисперсия ничтожна, и направление синфазности для антистоксова рассеяния в соответствии с опытом практически совпадает с направлением распространения возбуждающего света.  [c.859]

Получив равномерное поле скоростей, после горловины (сечение З-.З) производится преобразование кинетической энергии потока в потенциальную энергию -энергию давления. Для чего после горловины устанавливается диффузор, при этом угол его расширения у, если поток газожидкостный, равен 7 1° [2, 7], если поток состоит из жидкости -9 1° [8], если поток газовый - выбирается из табл. 9.1.1. Диаметр отверстия выхода диффузора рекомендуется выполнять д = 2 , если поток газожидкостной или жидкостной. И он выбирается из табл. 9.1.1, если поток газообразный.  [c.225]

Приведенные рассуждения показывают, что при повороте сверхзвукового газового потока около внешнего тупого угла значения скорости, давления и плотности остаются постоянными вдоль лучей, исходящих из угловой точки и являющихся характеристиками. Поэтому при аналитическом исследовании обтекания тупого угла удобно воспользоваться полярными координатами, поместив начало координат в этой угловой точке. Координатными линиями тогда служат лучи, исходящие из угловой точки, и концентрические окружности с центром в этой угловой точке. Координатами точки на плоскости являются радиус-вектор г этой точки п угол ф, составляемый радиусом-вектором с лучом, имеющим фиксированное нанравление, которое мы определим позже. Все параметры газа будем рассматривать как функции от г и ср w = w r, (р), р=р(г, ф), р = р(г, ф). В силу того, что параметры газа вдоль лучей в нашей задаче сохраняются постоянными, частные производные от гг , р и р по г равны нулю (при перемещении вдоль луча не происходит изменения параметров газа). Таким образом,  [c.158]


Легко вычислить максимальный угол бтм, на который может повернуться газовый поток, сходящий с плоской стенки. Этот угол представляет собой угол поворота потока, начальная скорость которого равна скорости звука, при истечении в вакуум.  [c.168]

Сверхзвуковой газовый поток обтекает поверхность клина с некоторым углом Ро. Каков угол наклона скачка Ос при диссоциации по сравнению со случаем постоянных теплоемкостей  [c.105]

Газовая струя с числом = 2,3 и давлением ра = 5,6-10 Па на срезе сверхзвукового сопла истекает в неподвижную среду с давлением р = 1,1-10 Па. Определите угол поворота струи (к == Ср/Су = 1,4).  [c.141]

Угол со, определяемый из (5.8) или (5.9), равен углу отклонения газового потока при его изэнтропическом расширении отточки, где М = 1, до состояния, характеризуемого некоторым произвольным числом М > 1, которое равно верхнему пределу при вычислении интеграла (5.8) (рис. 5.13).  [c.148]

Влияние интерференции. Между оперением и другими элементами летательного аппарата (крылья, корпус) возникает интерференция, которую следует учитывать при исследовании аэродинамической стабилизации. Физическая природа интерференции заключается в изменении картины обтекания и характера возмущений, вызванных каждым элементом аппарата в отдельности, что приводит к перераспределению давления и изменению силового воздействия. Наиболее важное проявление эффекта интерференции связано с образованием за крылом вихревой газовой пелены, которая вызывает скос потока у оперения, уменьшает за счет этого угол атаки и, как с.дед-ствие, снижает нормальную силу оперения.  [c.194]

Заданы газовая постоянная — 300 Дж/(кг-К) и расход продуктов сгорания Мт = 18 кг/с, а также значения параметров в начальном сечении pi, и противодавления р2- При рассмотрении продуктов сгорания как двухатомного газа расчеты показывают, что скорость его истечения и критическая скорость достигают 2000 и 1000 м/с соответственно, а диаметр критического сечения должен быть равен ПО мм. Рассчитать сопло Лаваля при тех же исходных данных, но принимая, что fe = 1,2 вследствие высокой температуры газа и его диссоциации. Угол конусности считать равным 2у = 12°.  [c.97]

При малых противодавлениях направление течения газа в выходной части сопла изменяется, газовая струя отклоняется от оси сопла на угол i, тем больший, чем меньше противодавление. В результате сечение струи увеличивается, давление уменьшается, а скорость истечения соответственно возрастает, достигая сверхзвуковой. Поворот выходящей из сопла струи газа вокруг точки С (вниз) обусловлен необходимостью выравнивания давлений в струе и окружающей среде, что возможно при расширении струи при повороте.  [c.354]

Задача 4.3. В активной ступени газ с начальным давлением />0 = 0,29 МПа и температурой /о=800°С расширяется до ] = 0,15 МПа. Определить абсолютную скорость выхода газа из канала между рабочими лопатками и построить треугольник скоростей, если скоростной коэффициент сопла ср = 0,95, скоростной коэффициент лопаток j/ = 0,il, угол наклона сопла к плоскости диска aj = 15°, отношение окружной скорости на середине лопатки к действительной скорости истечения газа из сопл u/ i = 0,44, угол выхода газа из рабочей лопатки 2 = 1 —5°, показатель адиабаты / =1,34 и газовая постоянная R = = 288 Дж/(кг К).  [c.148]

Все ваграночные топлива можно разделить на топлива с низкой реакционной способностью / = 15 250/0 (кокс, антрацит, термоантрацит и пекотощий кокс), средней реакционной способностью / = 25 -ь 500/о (бурый уголь, каменный уголь, газовый кокс, доменный кокс) и высокой реакционной способностью / — 50-j- 100% (древесный уголь, дрова, торф и торфяной кокс) [17]. В шахтных печах содержание Oj в продуктах горения тем больше, чем ниже реакционная способность топлива. Кроме того, содержание продуктов горения зависит от степени питания зоны горения топлива кислородом (воздухом). Если воздух подаётся в вагранку через один ряд фурм (фиг. 323, я), то вследствие отклонения  [c.176]

Молотый уголь (газовый, марок КГ и ГО, ГОСТ 8180—75) вводится в смесь в сухом тонкоразмолотом состоянии с целью уменьшения пригораемости к отливкам. Его состав и степень помола приведены ниже.  [c.457]

Временная печь из листового железа или кирпичной кладки (очаг, монгал) Местный предварительный и сопутствующий Кокс, древесный уголь, газовая горелка  [c.749]

Угол расхождения луча 0 пропорционален д,лине волны излучения, и таким образом лгинимальн1.1е размеры пятна также возрастают нронорциональио увеличению длины волны. Предельная плотность энергии от твердотельного лазера в 100 раз выше, чем от газового лазера (длина волпы, а следовательно, и о увеличиваются в 10 раз).  [c.169]

Однако характерный профиль скорости газа в движущемся про-тивоточно продуваемом плотном слое нельзя объяснить только эффектом снижения плотности в пристенной зоне. Так как сыпучая среда во входном участке располагается под определенным углом, то по оси камеры высота слоя больше, чем на периферии (рис. 9-1,а). При этом необходимо учитывать, что этот угол зависит от формы, физических свойств материала и скорости встречного потока газа. При отсутствии газового потока для гладких, окатанных и округленных зерен он равен примерно 30°. С увеличением скорости газа до предельной величины, при которой начинается псевдоожижение, угол откоса падает до 10° и ниже [Л. 305]. Согласно Л. 237] небольшая разность высот слоя вызывает значительную неравномерность расхода воздуха, особенно в невысоких и неизотермичных камерах.  [c.276]


Используя описанную модель процессов эжекции и тепломассообмена в многокомпонентном свободно истекающем струйном течении, рассчитываются расходы жидкой и газовой фаз, их компонентные составы и термогазодинамические параметры, а также находятся из распределения в струе. В качестве примера на рис. 4.13-4.17 представлены рассчитанные профили скоростей жидкой и газовой фазы, плотности газожидкостной смеси и ее температуры в струйном течении, состоящем из жидкостного потенциального ядра, истекающего со скоростью 35 м/с в неподвижный газ, и жидкостно-газового пограничного слоя. Задавались угол сужения потенциального ядра Р = 22,62°, угол расширения пограничного слоя а = 33,4°, радиус струи на выходе из поля составляет 20 мм, температура жидкостного потенциального ядра 290 К (17°С), температура окружающего струю газа 283 К (10°С).  [c.128]

Это и есть условие отсутствия завихренностп в сверхзвуковом газовом потоке, обтекающем внешний тупой угол. Его можно было бы получить также непосредственно из выражения (ЮЗ) гл. II. Каждую струйку рассматриваемого течения можно считать энергетически изолированной, причем уравнение энергии целесообразно использовать в кинематической форме (48) из гл. 1  [c.159]

В ряде задач прикладной газовой динамики приходится рассчитывать такие течения, в которых абсолютная скорость газа составляет некоторый угол с осью потока. Помимо осевой скорости Wa, определяющей расход газа и количество двпжения вдоль оси потока, здесь имеются составляющие скорости в плоскости, перпендикулярной к осп,— радиальная iVr или окружная Wt скорость частиц газа. Примером может служить течение закрученного газа в кольцевом канале, встречающееся в различных впхревых аппаратах (окружная составляющая), пли расширение сверхзвуковой струп газа, вытекающей в атмосферу с большим избыточным давлением (радиальная составляющая).  [c.253]

Расширение газа при этом является односторонним, а критическое сечение наклонено к оси на угол б, равный углу поворота газового потока около точки А при разгоне от критической скорости (М = 1) до расчетного значения числа Маха (М<,) для данного отношения давленш . По.тная длина выступающей за обечайку (хвостовой) части центрального тела определяется точкой пересечения последней характеристики АВ с осью. Опыты показывают, однако, что хвостовая часть центрального тела может быть без заметного снижения тяги укорочена на 30 -ь 50 %  [c.446]

На рис. 2.32 сплошные кривые представляют собой гидростатически равновесные формы межфазной поверхности для задач типа II. Линии QAB, ODB, ВС, О определяют границы максимальных участков устойчивости равновесных поверхностей раздела в гидростатических системах для разного типа задач. Линия ODB соответствует предельным формам свисающих капель (или сидящих пузырьков) на плоской поверхности при разных значениях контактного угла 0, (для капель — краевого угла 9). Ниже этой линии, ограниченной справа границей ВС, находится область устойчивых (в малом) двухфазных систем этого типа (на линии ВС контактный угол равен нулю). Линия ОАВС соответствует предельным формам капель и пузырьков на срезе капилляра (см. рис. 2.21, а). Линия FH соответствует предельным формам границы раздела в перевернутых цилиндрических контейнерах для различных контактных углов (точка F — угол О (или п), точка Н — угол п/2). Вдоль линии OJFконтактный угол 0, = 0. Таким образом, устойчивым осесимметричным состояниям жидкости, подвешенной в цилиндре ( перевернутый контейнер , рис. 2.20, б), соответствуют интегральные линии, оканчивающиеся внутри области OЯFJO( м. рис. 2.32). Равновесные линии, оканчивающиеся внутри области OGFDKO (см. рис. 2.32), отвечают устойчивым состояниям жидкой капли, подвешенной на цилиндрическом стержне (или газового пузырька снаружи цилиндра, целиком погруженного в жидкость) — см. рис. 2.21, б.  [c.117]

Задача 4.4. В реактивной ступени газ с начальным давлением />0 = 0,29 МПа и температурой /о=820°С расширяется до 2 = 0,15 МПа. Построить треугольник скоростей, если скоростной коэффициент сопла ф = 0,965, угол наклона сопла к плоскости диска t = T, скоростной коэффициент лопаток ф = 0,Ю5, отношение окружной скорости на середине лопатки к действительной скорости истечения газа из сопл и/с, = 0,5, угол выхода газа из рабочей лопатки 2 = 20°, степень реактивности ступени р = 0,48, показатель адиабаты к=, ЪА и газовая постоянная Л = 288 ДжДкг К).  [c.149]


Смотреть страницы где упоминается термин Уголь газовый : [c.188]    [c.266]    [c.349]    [c.398]    [c.95]    [c.244]    [c.150]    [c.574]    [c.126]    [c.121]    [c.367]    [c.94]   
Производство ферросплавов (1985) -- [ c.13 , c.14 ]

Теплотехнический справочник Том 2 (1958) -- [ c.280 ]



ПОИСК



Горелки ацетилено-кислородные — Технические характеристики газовые сварочные — Движения кинематические 217 — Угол наклон

Оптимизация системы пылеприготовления электростанций при размоле каменных газовых углей ухудшенного качества

Поток Скорость газовый — Параметры при обтекании выпуклого угла 698 — Смешение

Угол смачивания унирвесальная газовая постоянная



© 2025 Mash-xxl.info Реклама на сайте