Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель Условие теплового баланса

В условиях теплового равновесия энергия, испускаемая г-й плоскостью в системе из Л +2 поверхностей, должна быть равна поглощаемой ею части приходящего из системы потока. Так как для серых поверхностей, образующих модель, т = оТ, из уравнений баланса энергии для всех плоскостей можно составить следующую систему уравнений относительно Г, при известных Гст и Тел.-  [c.163]

Первым этапом методики прогнозирования является разработка математических моделей агрегатов-источников БЭР и утилизационных установок для возможных стратегий перспективного развития. Математические модели технологических процессов строятся на основе данных статистического анализа или с использованием математических соотношений, вытекающих из физической природы процессов (уравнений материального, теплового баланса и т. п.). При этом простые аналитические модели позволяют вчерне разобраться в основных закономерностях явлений, а любое дальнейшее уточнение может быть получено статистическим моделированием. В этом заключается дуализм использования математических моделей технологических процессов, которые, с одной стороны, являются неотъемлемой частью всего комплекса методов принятия решений в условиях неопределенности, а с другой стороны, будучи использованы в качестве самостоятельных объектов исследования, эти модели позволяют получить ряд полезных результатов. Путем варьирования различных параметров (входных по отношению к моделируемому процессу) может быть оценен целый ряд функциональных зависимостей, а также получаемые при возмущениях на входе изменения параметров на выходе системы (к которым относятся, в частности, удельные показатели выхода и выработки энергии на базе БЭР).  [c.269]


Одну из первых попыток математического моделирования процессов пайки предпринял В. П. Фролов . Автор исходил из понятия о математической модели реального процесса как некоторого математического объекта, соответствующего данному физическому процессу. Математическая модель процесса изготовления паяного изделия представлена им как система условий в виде уравнений, неравенств и формул, описывающих наиболее важные и характерные особенности процесса пайки. Им определены (в первом приближении) некоторые условия изготовления паяных изделий температура, прочность и равнопрочность паяных соединений, выносливость, смачиваемость н растекаемость, конструктивная преемственность изделия, тепловой баланс.  [c.6]

Из анализа условий работы кристаллизатора составляют уравнения теплового баланса для металла, элементов кристаллизатора, охлаждающей жидкости и уравнения энергетического баланса для определения динамики изменения усилия трения отливки в кристаллизаторе. Затем на основании их составляют дифференциальные уравнения, которые позволяют определить структуру математической модели кристаллизатора как объекта управления.  [c.564]

Уравнения модели описывают, во-первых, технологические цепочки преобразования энергоресурсов от добычи (производства) до потребления с учетом действующих в этом процессе Ограничений. В модели рассматриваются балансы отдельных видов котельно-печного и моторного топлива, тепловой и электрической энергии. Во-вторых, уравнения модели описывают территориальные связи ЭК, обеспечивая условие баланса производства и потребления (с учетом меж-  [c.434]

Основным численным методом решения дифференциальных уравнений теплопроводности является метод конечных разностей [23]. Формально он базируется на приближенной замене в дифференциальном уравнении и граничных условиях производных разностными соотношениями между значениями температур в узлах конечно-разностной сетки. В итоге для каждого узла с неизвестным значением температуры получается алгебраическое уравнение, которое для задачи стационарной теплопроводности может быть также получено из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплопроводящих стержней [12, 18]. Методы решения таких уравнений хорошо разработаны [24], а для реализации этих методов в математическом обеспечении современных ЭВМ предусмотрены стандартные программы. Алгебраическому уравнению для каждой узловой точки можно дать вероятностную интерпретацию и использовать для решения задач метод статистического моделирования (метод Монте-Карло) [12].  [c.44]


Пример 1. Динамика химического реактора [4]. Рассмотрим модель химического реактора, который представляет собою открытую гомогенную систему полного перемешивания. В такой системе происходит непрерывный массо-и теплообмен с окружающей средой (открытая система), а химические реакции протекают в пределах одной фазы (гомогенность). Условие идеального перемешивания позволяет описывать все процессы при помощи дифференциальных уравнений в полных производных. Предположим, что рассматриваемый химический реактор — эго емкость, в которую непрерывно подается вещество А с концентрацией Хд и температурой г/ ). Пусть в результате химической реакции А В h Q образуется продукт В и выделяется тепло Q, а смесь продукта и реагента выводится из системы со скоростью, характеризуемой величиной X. Тепло, образующееся в результате реакции, отводится потоком вещества и посредством теплопередачи через стенку реактора. Условия теплопередачи характеризуются температурой стенки у и коэффициентом со. Для составления уравнений динамики химического реактора воспользуемся законами химической кинетики, выражающими зависимость скорости химического превращения от концентраций реагирующих веществ и от температуры, законом сслранения массы (условие материального баланса), а также законом сохранения энергии (условие теплового баланса реактора).  [c.53]

Необходимо дать пояснения по аналитической модели процесса. Охладитель подается по нормали к внутренней поверхности. Известна интенсивность теплообмена на входе — условие (7.3). Координата Z =L начала зоны испарения определяется из условия достижения охладителем состояния насыщения (fj = fj, i = i ), причем зарождение паровых пузырьг ков внутри пористых металлов происходит практически в условиях термодинамического равновесия, т. е. Tj - h z=L 1 °С- В варианте б температура пористого каркаса в точке Z =L достигает максимума Г ах и поэтому здесь выполняется условие адиабатичности МТу/с , = = ydTildZ = 0. В варианте а через начало области испарения происходит передача теплоты теплопроводностью на жидкостной участок, поэтому здесь последнее из граничных условий (7.7) является уравнением теплового баланса. Аналогичное условие (7.8) соблюдается и в окончат НИИ зоны испарения, координата z =К которой рассчитывается из условия, что энтальпия охладителя равна энтальпии i" насыщенного пара.  [c.161]

Расчет нестационарного теплового режима по моделям с сосредо-ш киными параметрами сводится к решению систем уравнений теплового баланса вида (1.2), (1.3) с начальными условиями (1.6), 7, е. к решению задачи Коши для систем обыкновенных дифференци-a.ibiu.ix уравнений первого порядка. В случае линейных уравнений решение удается представить в аналитическом виде при числе уравнений /V < 4. Для нелинейных задач и в случае /V > 4 точное решение в аналитическом виде получить не удается, за исключением некоторых частных случаев. Поэтому при расчетах нестационарных тепловых режимов систем тел широко применяют численные методы, которые мы сначала рассмотрим применительно к одному уравнению вида  [c.27]

Динамика атмосферы Марса. Динамика разреженной атмосферы Марса, обладающей малой тепловой инерцией, во многом отличается от земной и венерианской. Модель глобальной циркуляции, в основе которой лежит условие геострофического баланса (Ко 1), предсказывает аналогичную топологию движений в тропосфере и стратосфере, с преобладанием ветров, дующих в восточном направлении на высоких широтах зимой и в субтропиках летом, и в западном направлении на остальных широтах. В то же время, основным движущим механизмом переноса в меридиональном направлении служит сезонный обмен углекислым газом между атмосферой и полярными шапками, в результате чего возникают конфигурации типа ячейки Хэдли, с восходящими и нисходящими потоками и перестраивающейся системой ветров у поверхности и на больших высотах в летней и зимней полусферах (Зурек и др., 1992 Маров, 1992 1994). На характер циркуляции сильное влияние оказывает рельеф поверхности (ареография), от которой зависят как наблюдаемая картина ветров, так и генерация горизонтальных волн различного пространственного масштаба. В свою очередь, планетарные волны, обусловленные бароклинной нестабильностью атмосферы, и внутренние гравитационные волны проявляются в виде нерегулярностей в профилях температуры и вертикальных движений в стратосфере. С ними связаны также наблюдаемые волновые движения в структуре облаков с подветренной стороны при обтекании препятствий, свидетельствующие о существовании в  [c.28]


В условиях открытого. космоса. собственное или отраженное тепловое злуиение космического аппарата снова на аппарат не попадает. Для имитации этих условий при проведении испытаний в вакуумных камерах необходимо, чтобы излучение, попадающее на. модель от стенок камеры, -было минимальным, поэтому стенки камеры должны иметь низкую отражательную способность. Для имитации условий чер.но1Го холодного космоса стенки вакуумных камер охлаждаются жидким азотом, что позволяет уменьшить до пренебрежимо малого уровня собственное излучение от стенок камеры на аппарат. Однако газообразные продукты, выделяющиеся из испытуемой модели (как, например, пары НгО и СОг), легко конденсируются на стенках камеры, что приводит к изменению эффективной отражательной способности стенок. Как было показа,но выше, присутствие кондвноирова.нных газов может существенно повлиять на тепловой баланс испытуемой модели. При наличии тонкой пленки на стенках камеры отражательная способность  [c.344]

В уравнении теплопроводности можно аппроксимировать конечными разностями производные не по всем независимым переменным. В итоге получится система дифференциальных уравнений (обыкновенных или в частных производных). Если удается получить аналитическое решение такой системы, то оно будет приближенным решением задачи, так как при конечноразностной аппроксимации внесена погрешность в математическое описание процесса тегглопро-водности. Однако обычно такой прием частичной замеггы производных конечными разностями, известный как метод прямых [27], используют для решения полученной системы уравнений одним из эффективных численных методов. Например, для задачи нестационарной теплопроводности- аппроксимация производных по пространственным координатам переводит уравнение в частных производных в систему обыкновенных дифференциальных уравнений (в общем случае нелинейных), которая может быть решена методами численного интегрирования Эйлера-Коши, Рунге-Кутта, Адамса и т.п. [4, 104]. Такую же систему обыкновенных диф -ренггиальных уравнений получают из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплоемких масс и теплопроводящих стержней [27].  [c.210]


Смотреть страницы где упоминается термин Модель Условие теплового баланса : [c.141]    [c.25]    [c.82]    [c.45]    [c.210]   
Справочник по пайке Изд.2 (1984) -- [ c.332 ]



ПОИСК



Тепловые балансы



© 2025 Mash-xxl.info Реклама на сайте