Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Парогенераторы циркуляцией

Принципиальная схема двухконтурной атомной энергетической установки с паровой турбиной (рис. 8.12) состоит из ядерного реактора /, где выделяется теплота, отводимая промежуточным теплоносителем, которым в зависимости от типа реактора может быть газ (гелий, двуокись углерода), органический теплоноситель, вода или жидкий металл (натрий). Циркуляция промежуточного теплоносителя в контуре реактора осуществляется насосом 3. В парогенераторе 2 промежуточный теплоноситель отдает теплоту рабочему телу — водяному пару, которое совершает цикл обычной паротурбинной установки. Водяной пар расширяется в паровой турбине 4, затем конденсируется в конденсаторе 5, а конденсат направляется насосом 6 обратно в парогенератор.  [c.216]


Рис. 5.1. Принципиальная схема парогенератора с естественной циркуляцией Рис. 5.1. <a href="/info/4763">Принципиальная схема</a> парогенератора с естественной циркуляцией
В соответствии с этими характеристиками водяные парогенераторы классифицируют на следующие группы по паропроизводительности— большой, средней и малой, по характеру циркуляции — с многократной естественной, многократной принудительной и однократной принудительной, по виду сжигаемого топлива — с камерными топками для сжигания пылевидного твердого топлива, с камерными топками для сжигания мазута и газа и со слоевыми топками для сжигания кускового твердого топлива.  [c.280]

Парогенераторы ВТ используют при низком давлении для выработки насыщенного пара циркуляция теплоносителя — многократная естественная, топки — камерные для сжигания газа и мазута.  [c.280]

Рис. 5.2. Принципиальная схема естественной многократной циркуляции теплоносителя в парогенераторе Рис. 5.2. <a href="/info/4763">Принципиальная схема</a> естественной <a href="/info/104601">многократной циркуляции</a> теплоносителя в парогенераторе
С повышением давления теплоносителя в парогенераторе разность между рж и Рем уменьшается и, как следствие этого, уменьшаются полезный напор, скорость и кратность циркуляции. Чтобы сохранить движущий полезный напор при повышении давления теплоносителя, в парогенераторе необходимо увеличить высоту подъемных труб. Этим и объясняется то, что с увеличением давления пара в парогенераторе увеличивается его высота.  [c.283]

В химической технологии для целей обогрева аппаратов и машин в интервале температур от 400 до 800 °С обычно используются ртутнопаровые установки, работающие с естественной циркуляцией теплоносителя. Принципиальная схема обогрева парами ртути с возвратом конденсата самотеком изображена на рис. 5.8. Вырабатываемый в парогенераторе / насыщенный пар ртути поступает в теплоиспользующие аппараты 3. Здесь, осуществляя равномерный обогрев стенок аппаратов, он конденсируется. Оставшиеся пары конденсируются в холодильниках 2 и 4. Конденсат из аппаратов 2, 3 и 4 самотеком стекает обратно в парогенератор. Аналогичные установки могут безостановочно работать не менее одного года. Контроль температуры обогрева в данной установке сводится к контролю давления пара на паропроводе манометром 7. Посредством регулировочных клапанов нетрудно поддерживать заданное давление паров ртути с обеспечением колебаний температуры в пределах 5...10°С. При обогреве конденсирующимися парами ртути полностью исключается опасность местного перегрева. Все трубопроводы как для парообразной, так и жидкой ртути выполняются из спецсталей, все соединения — сварные фланцевые соединения желательно избегать.  [c.290]


На рис. 5.12 изображена схема котла-утилизатора СКУ-14/40 (в числителе - производительность пара в т/ч, в знаменателе - избыточное давление в кг/см ), представляющего собой горизонтальный цилиндр диаметром 2900 мм и длиной 7570 мм, разделенный перегородкой 4 на две секции слева — змеевиковый парогенератор с принудительной циркуляцией, справа — змеевиковый пароперегреватель. Вода из барабана 2 самотеком поступает в циркуляционный насос 3, который нагнетает ее в парогенератор 1. Образующаяся в нем пароводяная смесь поступает в барабан 2, где происходит ее сепарация вода снова поступает в парогенератор, а отсепарированный насыщенный пар-в пароперегреватель 5 и оттуда - к потребителю. Парогенератор обогревается газами, выходящими из печи обжига серного колчедана, а пароперегреватель - газами, выходящими из первого слоя контактной массы реактора окисления сернистого газа в серный ангидрид.  [c.295]

В зависимости от способа организации движения рабочего тела в испарителе парогенераторы АЭС подобно паровым котлам классифицируют на парогенераторы с естественной циркуляцией, с многократно принудительной циркуляцией и прямоточные.  [c.246]

Циркуляция воды в рассматриваемом парогенераторе — естественная, т. е. имеется необогреваемый опускной участок и обогреваемый подъемный. Опускным участком в горизонтальном парогенераторе служит объем, расположенный между корпусом и трубным пучком.  [c.249]

На рис. 151 показана схема вертикального парогенератора с естественной циркуляцией, со спиралевидной поверхностью теплообмена.  [c.252]

Парогенератор выполнен с принудительной циркуляцией и имеет паропроизводительность D = 2(3 ООО кг/ч. Часть насыщенного пара (2250 кг/ч) отбирается на общесудовые нужды, часть перегретого (6000 кг/ч) — на турбогенераторы судовой электростанции.  [c.206]

Расчет циркуляции в паровых котлах и парогенераторах водяного пара ведется по нормативному методу гидравлического расчета [26, 103, 173]. Определение истинных паросодержаний здесь проводится с помощью номограмм, построенных по экспериментальным данным. В расчетах при подъемном движении потока в вертикальных трубах, когда р 0,9, используется формула  [c.25]

При р>0,9 для Прямоточных и многоходовых элементов котлов и парогенераторов истинные паросодержания ф определяются в зависимости от расходного паросодержания р по номограмме рис. 1.12,6. Коэффициент С при этом устанавливается но номограмме рис. 1.12, а, так же как и ранее, по значениям т>см и р. Для элементов с многократной циркуляцией ф определяется по уравнению [26]  [c.25]

В современных энергетических паровых котлах или парогенераторах опускные трубы не обогреваются. В опускных линиях испарителей и выпарных аппаратов, выполненных, например, по схемам, приведенным на рис. 2.5, а, в, обогрев имеет место (на наружной поверхности греющей секции). Опускные трубы имеют обогрев также в паровых котлах низкого и среднего давления, где часто небольшой обогрев опускной системы целесообразен, так как при этом уменьшается длина экономайзерного участка подъемной части контура, а для контуров небольшой высоты это может привести к заметному увеличению кратности циркуляции. Однако здесь обогрев выбирают таким, чтобы парообразования в опускной системе при стационарном режиме не было.  [c.64]

Если вся масса жидкости, поступающей в трубу парогенератора, прогревается до температуры насыщения, то по ходу потока значение коэффициента теплоотдачи (как и при кипении в большом объеме) меняется от значения, устанавливающегося при заданной скорости в однофазной среде, до значения при развитом пузырьковом, кипении насыщенной жидкости. Закономерность изменения коэффициента теплоотдачи ino длине парогенератора а=[ х) для данной жидкости при фиксированном давлении зависит от соотношения между скоростью. парообразования /(гр"), скоростью циркуляции Wo и недогревом жидкости на входе в трубу. А ед. Наиболее простой вид функции а от х наблюдается при высоких давлениях, когда изменение температуры насыщения по ходу потока пренебрежимо мало. При низких давлениях суммар ное сопротивление, обусловленное трением и ускорением смеси, при определенных соотношениях режимных параметров оказывается соизмеримым с абсолютным давлением в системе. При этом температура насыщения по ходу потока заметно. понижается, в связи с чем закон изменения t T, а следовательно, и коэффициента теплоотдачи а по длине трубы может существенно отличаться от зависимостей t T=f(x) и a=f x), устанавливающихся, при высоких давлениях. Обеднение теплоотдающей поверхности активными зародышами паровой фазы при понижении давления также влияет на вид функции ter от х. В этих условиях влияние скорости оказывается более значительным и переход от области конвективного теплообмена в однофазном потоке к области развитого поверхностного кипения происходит на участке трубы большей длины.  [c.261]


Тепловые коммуникации станции выполнены по так называемой двухконтурной схеме (рис. 51). Замкнутый тракт ее первичного контура (реактор 1 — теплообменник 2 — циркуляционный насос 5 — реактор), размещенный в зоне защитных сооружений, предназначен для циркуляции теплоносителя — воды, отбирающей тепло от тепловыделяющих элементов. Тракт вторичного контура с обогревающими его змеевиками теплообменника (парогенератор 4 — паровая турбина 5 — конденсатор 6 — питающий насос Т — парогенератор)  [c.174]

Стальной корпус реактора этой станции, защищенный в зоне циркуляции воды первичного контура наплавленным внутренним противокоррозийным слоем нержавеющей стали, шестью трубопроводами соединен с парогенераторами и насосами. Активная зона его собрана из 349 шестигранных циркониевых кассет, в каждой из которых помещено по 90 тепловыделяющих элементов — циркониевых трубок с сердечниками из спеченной двуокиси урана, обогащенного до 1,5% ураном-235. Вода, протекающая через реактор в количестве около 27,5 тыс. м час, подается в него насосами под давлением 100 атм и с температурой 250° С. Она направляется сверху вниз по кольцевому зазору между кассетами и стенкой корпуса, затем, меняя направление движения на обратное, проходит в активную зону и далее, нагретая до 270° С, отводится к парогенераторам, отдавая тепло воде вторичного контура. Влажный пар, образующийся в парогенераторах, после осушения в сепарационных устройствах поступает к трем турбинам мощностью по 70 тыс. кет каждая.  [c.178]

Ряс. 1-1. Парогенератор с естественной циркуляцией.  [c.12]

В таких условиях оказывается наиболее целесообразным применение естественной конвекции в испарительных поверхностях. Контур естественной циркуляции может быть организован и непосредственно внутри корпуса испарителя, как это выполнено в парогенераторах ВВЭР.  [c.181]

ПАРОГЕНЕРАТОР С МНОГОКРАТНОЙ ПРИНУДИТЕЛЬНОЙ ЦИРКУЛЯЦИЕЙ (МПЦ) В ИСПАРИТЕЛЕ (ОСОБЕННОСТИ И ПОРЯДОК ПОВЕРОЧНОГО РАСЧЕТА)  [c.189]

Котлоагрегаты делятся на паро- и теплогенераторы. Парогенератором называется агрегат, состоящий из топки, поверхностей нагрева, находящихся под давлением рабочей среды (жидкого теплоносителя, парожидкостной смеси, пара), и воздухоподогревателя, предназначенный для поАучения пара заданных параметров. На рис. 5.1 изображена принципиальная схема парогенератора с естественной циркуляцией в нем жидкого теплоносителя, например воды. В топке I сжигается топливо, образующиеся продукты сгорания в виде факела передают часть своей внутренней энергии (в основном излучением) кипящей воде, движущейся в кипятильных трубах 2, расположенных на стенках топки. Эти испарительные поверхности нагрева называются экранами. Далее продукты сгорания проходят через верхнюю часть заднего экрана 3, называемого фестоном (разреженные трубы экрана), и последовательно омывая пароперегреватель 4, экономайзер 5, воздухоподогреватель 6, охлаждаются до 180... 120°С и с помощью дымососа через дымовую трубу выбрасываются в атмосферу.  [c.276]

В парогенерирующих трубах вследствие высоких значений температура стенки этих труб близка температуре кипящего теплоносителя (отличается не более чем на 50 °С). Однако в этих трубах с повышением плотности тепловых потоков увеличивается содержание пара в парожидкостной смеси и оно может достигнуть такого значения, что на внутренней поверхности труб образуется паровая пленка. В этом случае резко ухудшается интенсивность теплообмена, вследствне чего резко возрастает температура стенки трубы и она может прогореть. Это исключается путем соблюдения гидродинамического режима движения парожидкостной смеси в обогреваемых трубах, который обеспечивается надежной циркуляцией теплоносителя в циркуляционном контуре парогенератора.  [c.282]

На рис. 5.2 представлена принципиальная схема естественной многократной циркуляции теплоносителя в парогенераторе. Насосом I теплоноситель подается в экономайзер 2, откуда он поступает в верхний барабан 3 циркуляционного контура парогенератора. Теплоноситель циркулирует по схеме верхний барабан 3 — опускные трубы 4 — нижний барабан либо коллектор 5 — нодъсмпые трубы 6 - верхний барабан 3, естественным путем вследствие разности плотностей жидкости р в необогреваемых трубах 4 и парожидкостной смеси Рсм в обогреваемых подъемных трубах. Насыщенный пар из верхнего барабана 3 поступает в пароперегреватель 7 и далее к потребителю. Движущей силой циркуляции будет движущий напор (давление), Па, равный  [c.282]

Естественная циркуляция в парогенераторе считается надежной, обеспечивающей нормальный темперагурный режим работы обогреваемых труб, если выполняется равенство  [c.282]

Другой важной гидродинамической характеристикой парогенератора является кратность циркуляции, т. е. отношение количества циркулирующей в парогенераторе жидкости G к количеству образующегося пара D. Для надежности циркуляции теплоносителя в парогенераторе кратность циркуляции должна находиться в следующих пределах 4...10-ДЛЯ воды, 6...20-ДЛЯ ВОТ в трубах экрана и 20...100-В остальных парогенерирующих трубах для воды и ВОТ.  [c.283]

В тех случаях, когда исключается надежность естественной циркуляции теплоносителя в парогенераторе, переходят на парогенератор с принудительной многократной циркуляцией, принципиальная схема которой дана на рис. 5.3. Теплоноситель насосом I перекачивается через экономайзер 2, где он нагревается продуктами сгорания топлива и поступает в барабан 3. Из этого барабана с помощью циркуляционного насоса 4 теплоноситель нагнетается в обогреваемые продуктами сгорания парогенерирующие трубы 5. В них образуется парожидкостная смесь, которая по выходе в барабан 3 сепарируется пар поступает  [c.283]

В химической технологии используются парогенераторы, работающие на ВОТ (дифенильная смесь и дитолилметан) и ртути. Это парогенераторы с естественной циркуляцией.  [c.288]


При равных давлениях теплота парообразования указанных ВОТ примерно в 9 раз меньще, чем у воды, и, следовательно, при равных плотностях тепловых потоков массовое паросодержание в обогреваемых трубах парогенератора ВОТ будет примерно в 9 раз больше, чем у водяных парогенераторов. При малых значениях скорости и кратности циркуляции это может привести к резкому уменьшению отвода теплоты от стенок обогреваемых труб к ВОТ вследствие образования в пограничном слое паровой пленки с низкой теплопроводностью (теплопроводность ВОТ примерно в 5...6 раз меньше, чем у воды). Произойдет недопустимый перегрев обогреваемых труб, разложение ВОТ в пограничном слое и в конечном счете эти трубы перегорят. Критическая плотность тепловых потоков при кипении ВОТ в обогреваемых (кипятильных) трубах находится в пределах 160...200 кВт/м . На основании вышеизложенного в целях надежной работы парогенерирующих труб теплогенераторы ВОТ проектируют на плотность теплового потока не выше 100 кВт/м , при этом не допускается обогрев опускных и парогенерирующих труб, установленных под углом наклона к горизонту < 85°.  [c.288]

На рис. 5.7 изображен парогенератор ВОТ БелКЗ тепловой мощностью 8,72 МВт. Это однобарабанный парогенератор радиационноконвективного типа с естественной циркуляцией ВОТ, предназначенный для установки на открытом воздухе и способный противостоять сейсмическим воздействиям в 7 баллов. Топка объемом 134 м оснащена помимо боковых б и заднего экранов двухрядным экраном двустороннего облучения 5. Чтобы избежать коксования дифенильной смеси в трубах двухсветного экрана, его первые две трубы, обращенные в сторону горелок, покрыты шипами, на которых крепится огнеупорная замазка, имеющая малую теплопроводность. Питание парогенератора дифенильной смесью осуществлено через верхний барабан 1, откуда она по шести опускным необогреваемым трубам 3 поступает в три соединенных между собой нижних коллектора 2 диаметром 400 мм. Образующаяся в парогенерирующих трубах 4, 6 парожидкостная смесь поступает в барабан /, откуда пар, пройдя сепаратор, отводится к потребителю. Парогенератор имеет наружную стальную обшивку и обвязочный каркас.  [c.290]

В настоящее время на АЭС с водо-водяными реакторами широкое распространение получили горизонтальные однокорпусные парогенераторы с естественной циркуляцией. Принципиальная конструктивная схема такого парогенератора показана на рис. 150. Основными элементами парогенератора являются корпус / с патрубками 13 подвода питательной воды и 12 отвода пара коллектора теплоносителя с подводящими и отводящими патрубками 7 и 6, трубная теплообменная поверхность 9, устройство сепарации влаги 2, коллектора 14 раздачи питательной воды, штуцера 5 продувок, <9 дренажей и к уровнемерам.  [c.247]

Нижний конец обечайки крепится к фланцу. Таким образом, для получения доступа в коллектор при необходимости отсоединения трубок достаточно вывести из парогенератора внутриколлекторную обечайку вместе с фланцем. На верхнем конце обечайки выполнено разъемное уплотнение, отделяющее раздающую и собирающую части коллектора. Теплообменный пучок представляет собой витую теплообменную поверхность, составленную из концентрических слоев спиральных труб. Концы труб ввальцованы в стенки коллектора в его раздающей и собирающей частях. Дистанционирование труб осуществляется с помощью вертикальных планок, расположенных между слоями и имеющих пазы с углом наклона, равным углу навивки трубок соответствующего слоя. Сваренные между собой дистанционирующие планки образуют жесткие ребра, передающие нагрузку от пучка на коллектор. Для организации контура естественной циркуляции между трубным пучком и корпусом помещен цилиндрический кожух, который крепится и фиксируется относительно оси парогенератора с помощью специальных ребер, смонтированных на коллекторе. На этом же кожухе расположены осевые центробежные сепараторы 12 первой ступени. Второй ступенью сепарации служат вертикальные жалюзийные сепараторы 11.  [c.252]

Типом котельных агрегатов. На ТЭС с докритическим давлением пара устанавливаются п 1еимущественно барабанные котлы с естественной циркуляцией (типа К ). Применение прямоточных котлов (типа П ) необходимо при критическом и сверхкритическом давлениях свежего пара. Чем ниже начальное давление, тем меньше П11еимуществ дают прямоточные парогенераторы.  [c.210]

При многократной циркуляции для обогреваемых и необогрева-емых труб, когда л 0,7, а комплекс (шрр) 12-10 кг-МПа/(м2х Хс), с достаточной точностью коэффициент может определяться по кривым, пр иведенны1М на рис. 1.18. Для элементов прямоточных парогенераторов и других подобных условий, а также когда при  [c.32]

Появление пара в опускных трубах приводит к увеличению гидравлического сопротивления в них и изменению гидравлической характеристики опускной системы. При этом в некоторых трубах подъемной системы может произойти нарушение циркуляции. В опускной системе пар может появиться в результате захвата его из барабана котла или парогенератора (корпуса испарителя, паро-преобразователя или выпарного аппарата) вследствие кавитации или (если система обогревается) образоваться там непосредственно. Образование пара в опускных трубах возможно также при резком уменьшении давления.  [c.64]

Так, при температуре 297° С на входе в РМ и 60 °С — на выходе получается КПД цикла 34,8%, мощность на гребном валу — 12 кВт. Пройдя активную зону, паро-водяная смесь путем естественной циркуляции поступает в 1ш кчюю часть парогенератора  [c.186]

Методика определения водорода [19] дает возможность подобрать для данного парогенератора водный режиме минимальной концентрацией водорода в питательной воде и паре. Большая роль в развитии пароводяной коррозии принадлежит высокому уровню локальных тепловых нагрузок. Было бы принципиальной ошибкой считать, что путем улучшения водно-химического режима котлов при высоком уровне теплового напряжения можно ликвидировать пароводяную коррозию. При нарушениях топочного режима, шлаковании, вялой циркуляции воды в барабанных котлах, пульсирующего потока в прямоточных котлах (особенно при высоких тепловых нагрузках) средствами химической обработки воды практически невозможно предупредить разрушения металла в результате пароводяной коррозии. При недостаточной скорости воды в парогенерирующих трубах, обусловленной рядом теплотехнических факторов и конструктивными особенностями котлов (малый угол наклона, горизонтальное расположение труб), ядерный режим кипения может переходить б менее благоприятный — пленочный . Последний вызывает перегрев металла и, как правило, пароводяную коррозию. Развитию ее сильно способствуют вносимые в котел с питательной водой оксиды железа и меди, которые, образуя отложения на поверхностях нагрева, ухудшают теплопередачу. Стимулирующее действие меди на развитие пароводяной коррозии заключается также в том, что она вместе с оксидами железа и другими загрязнениями, поступающими в котел, образует губчатые отложения с низкой теплопроводностью, которые сильно способствуют перегреву металла. Прямое следствие парегрева стали и протекания пароводяной коррозии — появление в паре котла молекулярного водорода. Вполне понятно, что по его содержанию можно оценивать лишь среднюю скорость пароводяной коррозии, локализацию же разрушений таким методом выявить трудно.  [c.181]


Трубопроводы на АЭС служат для транспортировки теплоносителя, рабочего тела, воздуха, масла и т. п. Они соединяют в определеипой последовательности основное и вспомогательное оборудование станции. Трубопроводы подразделяются на главные и вспомогательные. К главным относятся трубопроводы, являющиеся составной частью основной технологической схемы станции трубопроводы первого и второго контуров, паропроводы от парогенераторов к турбинам, трубопроводы пара промежуточного перегрева, основного потока конденсата и питательной воды. Обычно диаметр главных трубопроводов находится в пределах от 108 до 850 мм. Так, на АЭС с реактором ВВЭР-1000 контур принудительной циркуляции имеет диаметр 850 мм, на АЭС с реактором ВВЭР-440 главный циркуляционный контур состоит из труб 560 X 32 мм.  [c.6]

Исходные данные для расчета номинального режима ПГ паропроизводитель-ность О, кг/с температура питательной воды на входе в ПГ /дв. температура перегретого пара С паропроизводительность промежуточного пароперегревателя Дцп, кг/с температура пара на входе и выходе в промежуточный пароперегреватель пп. вых пп. °С давление перегретого пара рд, МПа давление пара на входе в промежуточный пароперегреватель Рдд, МПа давление насыщенного пара р , МПа кратность циркуляции йд задается с последующей проверкой напор, создаваемый насосом МПЦ, Др, МПа допустимая потеря напора по тракту пара в промежуточном пароперегревателе Ардд, МПа расход греющей среды О, кг/с температура греющей среды на входе и выходе из парогенератора дх, Цык> °С температура греющей среды на входе в испаритель вхв> °С давление греющей среды па входе в парогенератор р ,, МПа число секций в экономайзе-  [c.189]


Смотреть страницы где упоминается термин Парогенераторы циркуляцией : [c.182]    [c.222]    [c.289]    [c.288]    [c.253]    [c.65]    [c.187]    [c.12]    [c.13]    [c.14]    [c.441]   
Парогенераторные установки электростанций (1968) -- [ c.13 , c.94 , c.131 , c.217 ]



ПОИСК



Воднохимическин режим парогенераторов с многократной циркуляцией

Высоконапорные парогенераторы с многократной принудительной циркуляцией

Кратность циркуляции в парогенераторе

Нарушение циркуляции в парогенераторе

Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников

Особенности конструкций высоконапорных парогенераторов . — Высоконапорные парогенераторы с естественной циркуляцией

Парогенератор расчет естественной циркуляции

Парогенератор с многократной принудительной циркуляцией (МПЦ) в испарителе (особенности и порядок поверочного расчета)

Парогенератор с многократной циркуляцией

Парогенератор, обогреваемый водой под давлением с естественной циркуляцией (особенности и порядок вариантного расчеОсобенности парогенератора

Парогенераторы ВОТ

Парогенераторы естественной циркуляцией

Парогенераторы комбинированной циркуляцией

Принудительная циркуляция в парогенераторах и водогрейных котлах

Циркуляция

Циркуляция в высоконапорном парогенераторе

Циркуляция в ртутном парогенераторе



© 2025 Mash-xxl.info Реклама на сайте