Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВЫ ТЕОРИИ Принцип Гюйгенса — Френеля

Строгое решение дифракционных задач как задач о распространении электромагнитных волн вблизи препятствий удалось получить лишь для сравнительно немногочисленных (4 — 5) случаев. Так, Зоммерфельд (1894 г.) решил задачу о дифракции на краю идеально проводящего прямого экрана. Расхождения между результатами теории Зоммерфельда и точными измерениями можно, по-видимому, отнести за счет невозможности точно осуществить на опыте условия теории (реальный экран нельзя сделать идеально проводящим и бесконечно тонким, а его края нельзя сделать идеально острыми, как предполагается при теоретическом рассмотрении). Сопоставление этого и некоторых других случаев, разобранных по методу, аналогичному методу Зоммерфельда, показывает, что приближенная трактовка на основе принципа Гюйгенса — Френеля и метода Юнга дает достаточно хорошее приближение для не очень больших углов дифракции. В соответствии с этим мы и в дальнейшем будем широко пользоваться методом Френеля, помня, конечно, об указанном ограничении.  [c.171]


В рамках электромагнитной теории света, для описания дифракционных явлений не требуется вводить какие-либо новые принципы. Но точное решение задачи о распространении света на основе уравнений Максвелла с соответствующими граничными условиями представляет большие математические трудности. В большинстве случаев, представляющих практический интерес, вполне достаточным оказывается приближенный метод решения задачи о распределении света вблизи границы между светом и тенью, основанный на принципе Гюйгенса—Френеля.  [c.268]

Теорема Гюйгенса была позднее обобщена Френелем и легла в основу так называемого принципа Гюйгенса—Френеля, играющего важную роль в теории дифракции (см. 8 2) и являющегося основным постулатом волновой теории света.  [c.136]

В основу своей теории дифракции он положил упомянутую выше идею Гюйгенса о вторичных волнах , но существенно ее видоизменив, а именно внеся в нее отсутствовавшее у Гюйгенса представление о том, что суперпозиция волн приводит, в зависимости от фазовых соотношений, к их усилению или ослаблению. Возникший таким образом принцип Гюйгенса—Френеля оказался чрезвычайно плодотворным и сохранил большое значение, несмотря на дальнейшее усовершенствование теории дифракции. Наше изложение будет основано на этом принципе.  [c.357]

Принцип Гюйгенса (и Гюйгенса — Френеля), основанный на опытах, представляет собой приближение, применение которого в некоторых частных случаях дает удовлетворительные результаты. Конечно, более точные результаты и строгое их объяснение возможно лишь на основе более глубокой теории (решения волнового уравнения).  [c.387]

Настоящая книга является первой попыткой систематического изложения физических основ работы нового класса приборов нелинейной оптики — преобразователей инфракрасного излучения — в видимом диапазоне. Для удобства читателей, не имеющих специальной подготовки в области нелинейной оптики, монография включает главу (первую) с изложением основных понятий этого раздела физики, необходимых для восприятия предмета. Во второй главе даны общие принципы расчета нелинейно-оптических преобразователей и показано, что с точки зрения формирования изображений каждый преобразователь эквивалентен некоторой линейной оптической системе с эффективными параметрами, зависящими от конфигурации и фазового фронта накачки, ее амплитуды, типа использованного синхронизма. В третьей и четвертой рассмотрены две основные схемы нелинейно-оптических преобразователей — схемы критического векторного и касательного (некритичного) синхронизма. Обсуждаются достоинства и недостатки каждой из них и возможные варианты оптимизации параметров. В последней главе анализируются разные практические аспекты работы преобразователей (спектральные и шумовые характеристики), приведены экспериментальные данные, иллюстрирующие степень соответствия параметров реальных преобразователей основным теоретическим представлениям. Приложения 1 и 3 несут самостоятельную информацию, поскольку в первом приведен новый метод в классической теории аберраций на основе интегрального принципа Гюйгенса — Френеля, а в третьем — расчетные данные по углам разных типов синхронизма. Часть информации дана в компактной форме — показаны эквипотенциальные поверхности угол синхронизма как функция длин волн накачки и инфракрасного излучения. Материал третьего приложения основан на расчетах Г. М. Барыкинского.  [c.3]


Изложение принципа Гюйгенса—Френеля в данном параграфе существенно отличается от приведенного в 3.3, где положение В0ЛН01ЮГ0 фронта в последующие моменты времени определялось как огибающая элементарных сферических волн, излучаемых каждой точкой, до которой дошел фронт в данный момент принцип Гюйгенса). Никакой интерференции между этими сферическими волнами Гюйгенс не учитывал, да и вообще не принимал по внимание фазовых соотношений. Поэтому принцип Гюйгенса в его первоначальной форме не мог служить основой волновой оптики. Потребовалось значительное время, чтобы после принципиальных дополнений Френеля оказалось возможным применить его для истолкования дифракции. Изложим идею принципа Гюйгенса—Френеля в тех терминах и понятиях, которые соответствуют электромагнитной теории света. Строггся математическая формулировка этого принципа, данная Кирхгофом, здесь не приведена .  [c.256]

Интегральные принципы описания распространения электромагнитных волн широко применяются в теории оптических приборов [7, 8]. В линейной оптике основой такого описания является принцип Гюйгенса — Френеля, позволяющий с единой точки зрения построить геометрическую (см. Прилояуение 1) и дифракционную [7, 8] теории прибора. Имеющиеся в литературе расчеты нелинейно-оптических преобразователей основаны, как правило, на непосредственном решении укороченных волновых уравнений [1—6] с использованием различных упрощающих предположений [159—160]. Подход функций Грина, аналогичный подходу Гюйгенса — Френеля, может эффективно применяться в теории параметрического преобразования изображения из ИК-области в видимую [175—177, 219, 223, 224].  [c.54]

Представление поля в виде контурного интеграла основывается на наших интуитивных знаниях о том, какое влияние оказывают границы апертуры. Из эксперимента известно, что при наблюдении из области тени границы освещаемой апертуры кажутся светящимися. Это наблюдение обсуждалось уже Ньютоном, который объяснил его отталкиванием корпускул света границами [И. Ньютон, Оптика , кн. 3, наблюдение I, рис. 1 и 2]..Позднее Юнг сформулировал волновую теорию, согласно которой дифрагированная волна образуется при отражении падающей волны на элементах границы, вызывающей дифракцию. Френель же объяснял дифракционные эффекты на основе принципа Гюйгенса если поле определяется в столь далекой области от геометрической тени, что открыты фактически все зоны Френеля (см. разд. 4.2.2), то освещенность остается той же самой, что и в отсутствие препятствий. И наоборот, если поле определяется в точке, лежащей глубоко в области геометрической тени, то вклад от колец низкого порядка отсутствует. Как следствие, сумма вкладов от частично освещенных колец равна приблизительно нулю, поскольку поле каждого из них компенсируется входящими с другим знаком полями от половинок ближайших соседей. В промежуточной области между светом и тенью из-за суперпозиции полей от разных колец можно ожидать осциллирующего поведения интенсивности.  [c.314]

Решающие шаги были сделаны в начале XIX столетия Юнгом и Френелем. Юнг изучал явление дифракции и показал, что картина максимумов и минимумов в затененном пространстве позади волоска обусловлена интерференцией волн, огибающих его с обеих сторон. Природа этих волн оставалась для Юнга неясной. Френель показал, что эти волны порождаются певозму-щенным фронтом волны по обе стороны от препятствия. Давая такое объяснение, Френель основывался на старом принципе Гюйгенса, согласно которому каждая точка волнового фронта может рассматриваться как источник вторичных волн. Сочетание этого принципа с принципом интерференции Юнга дало естественное объяснение правилу Гюйгенса о том, что огибающая вторичных волн образует новый волновой фронт. Если часть первоначального фронта волны преграждается препятствием, система вторичных волн является неполной, что и ведет к возникновению явлений дифракции. Полное согласие, полученное ежду теорией и опытами во многих трудных проблемах, не оставило сомнений в правильности объяснения, данного Френеле . Оно будет служить основой подхода ко многим проблемам, рассматриваемым в этой книге.  [c.16]


Смотреть страницы где упоминается термин ОСНОВЫ ТЕОРИИ Принцип Гюйгенса — Френеля : [c.118]    [c.283]    [c.264]    [c.492]   
Смотреть главы в:

Структура оптического изображения  -> ОСНОВЫ ТЕОРИИ Принцип Гюйгенса — Френеля



ПОИСК



Гюйгенс

Гюйгенса—Френеля

Основы теории

Принцип Гюйгенса

Принцип Гюйгенса Френеля

Френель

Френеля принцип

Френеля теория



© 2025 Mash-xxl.info Реклама на сайте