Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические Лучи главные

Для сложной центрированной оптической системы главное фокусное расстояние измеряется от главного фокуса, т.е. от точки действительного или мнимого пересечения лучей, выходящих из прибора, при входе их в прибор параллельно главной оптической оси, до главной плоскости - плоскости, в которой пересекаются направления падающего и выходящего лучей (рис. 33).  [c.302]

Оптические системы — Главные лучи  [c.545]


Рассмотрим световой поток, входящий в оптическую систему. Обратимся к рис. 6.3, на котором представлены элемент поверхности предмета ds и действующее отверстие D входного зрачка оптической системы. Главный луч наклонного пучка лучей, соединяющий центр элемента предмета и центр Р действующего отверстия зрачка, образует угол со с осью системы.  [c.81]

Для сложной центрированной оптической системы главное фокусное расстояние измеряется от главного фокуса, т. е. точки действительного или мнимого Пересе чения лучей, выходящих из прибора, при входе их в прибор параллельно главной оптической оси, до главной  [c.248]

Оптическая схема главного микроскопа изображена на фиг. 120,а. Пучок лучей от лампы 5, пройдя через конденсор 1, светофильтр 2 и ирисовую диафрагму 3, поступает в тубус нижнего освещения, где отклоняется зеркалом 4 под прямым углом вверх, проходит через линзу 5, освещает измеряемую деталь 9 и попадает в объектив 6. За объективом помещена оборачивающая призма 7. Лучи проходят защитные стекла тубуса 8 и окулярной головки 9, и изображение измеряемого предмета получается на штриховой окулярной сетке 10, которая наблюдается в окуляре 11.  [c.242]

На рис. 29.2 показано действие оптической системы. Главные направления кристаллической пластинки обозначены через X и К. После поляризатора (плоскость колебания ОР) образуются два луча, имеющие амплитуды  [c.220]

Займемся переходом от одной преломляющей поверхности к другой. Обратимся к фиг. 24, на которой показан ход главного луча между двумя преломляющими поверхностями оптической системы. Главный луч пересекает обе преломляющие поверхности в точках  [c.38]

Оптические квадранты 2 — 252 Оптические приборы 2 — 245, 246 Оптические системы — Главные лучи 2 — 233  [c.447]

Третья разновидность простой зеркальной системы содержит, кроме главного параболического зеркала, еще вторичное плоское, перпендикулярное к оптической оси главного зеркала (рис. 7.1, г). Это вторичное зеркало отражает пучок лучей в обратном, направлении и они собираются позади тыльной стороны главного зер-ка.1а, проходя через центральное отверстие в нем. Такой телескоп иногда называют кольцевым телескопом. Как мы увидим дальше, он может рассматриваться как  [c.215]

Основными источниками наиболее часто встречающихся на практике внешних естественных помех являются излучение небесных тел, Земли и ее покровов, атмосферы и ее образований, полярных сияний, а также искажающее влияние среды распространения излучения на сигнал. Последнее сказывается, главным образом, в ослаблении полезного сигнала в результате поглощения и рассеяния энергии излучения, а также в достаточно быстрых изменениях показателя преломления среды, приводящих к мерцанию и дрожанию изображений источников излучения. Кроме того, в ряде случаев необходимо учитывать медленные изменения показателя преломления среды, приводящие к рефракции оптических лучей.  [c.38]


Me говоря о том, что луч, падающий вдоль главной оптической осп, ввиду его нормальности к любой преломляющей поверхности системы проходит через систему без преломления.  [c.186]

В необыкновенном луче электрический вектор расположен в главном сечении (плоскости, проходящей через оптическую ось кристалла и падающий луч). В результате этого в зависимости от направления распространения необыкновенной волны угол между электрическим вектором и оптической осью меняется от О до 90 , что приводит к изменению скорости распространения необыкновенного луча = Vg от некоторого максимального или минимального (в зависимости от знака кристалла) значения скорости Ve до значения скорости обыкновенного луча t o- Соответственно показатель преломления для необыкновенного луча в зависимости от направления распространения в кристалле принимает значения между и п . Например, для исландского шпата (отрицательный кристалл) По — 1,658 п, = 1,486.  [c.260]

Опыт показывает, что луч света, идущий вдоль главной оптической оси, проходит через линзу бее изменения направления распространения. В воздухе или в вакууме все лучи, параллельные главной оптической оси выпуклой линзы, после прохождения линзы отклоняются к оси и проходят через одну точку F на главной оптической оси (рис. 269). Поэтому выпуклые линзы называют собирающими линзами. Точка F называется главным фокусом линзы. Плоскость, проходящая через главный фокус линзы перпендикулярно главной оптической оси, называется фокальной плоскостью.  [c.270]

В воздухе или в вакууме все лучи, параллельные главной оптической оси вогнутой линзы.  [c.270]

Такие пластинки изготовляют обычно из кварца, а иногда и из тонких слоев слюды, которая, несмотря на то является двуосным кристаллом, может быть использована в этих целях. Свойства пластинки Х/4 легко проверить, поместив ее между двумя скрещенными поляризаторами. Если при вращении анализатора интенсивность прошедшего света не меняется, то толщина подобрана правильно — на выходе из пластинки Получается циркулярно поляризованный свет. Добавив еще одну такую пластинку, можно снова перевести круговую поляризацию в линейную, в чем легко убедиться вращением анализатора. В по-добных опытах, конечно, должно быть выдержано упомянутое выше условие, т. е. вектор Е в волне, падающей на пластинку, должен составлять угол л/4 с ее плоскостью главного сечения. Это достигается относительным вращением поляризатора и пластинки вокруг направления луча. Здесь следует указать, что если направление колебаний вектора Е в падающей волке совпадает с оптической осью пластинки 1/4 (или с направлением, перпендикулярным этой оси), то через пластинку пройдет лишь одна волна. В таком случае из пластинки выйдет линейно поляризованная волна.  [c.117]

При построении изображений предметов и выводе основных формул геометрической оптики рассматриваются гомоцентрические (исходящие из одной точки) пучки света. Лучи, входящие в эти пучки, должны составлять малый угол с оптической осью системы (такие лучи называют параксиальными). Для них допустима замена синуса или тангенса угла с оптической осью значением самого угла, что часто упрощает вычисления. При описании построений используют удобный прием ( правило знаков ), согласно которому все расстояния отсчитываются от границы раздела двух исследуемых сред и те из них, которые оказываются направленными против распространения луча, считаются отрицательными. Кроме того, учитывается знак угла. Положительным считается угол, отсчитываемый от направления главной оптической оси по часовой стрелке, а углом, отсчитываемым в противоположном направлении, приписывается отрицательный знак.  [c.278]

Легко видеть, что разобранная выше тонкая линза может рассматриваться как частный случай толстой линзы, в которой точки Я1 и Я.2 совпадают и главные плоскости сливаются. Узловые точки, совмещенные с Я1 и Н , также совпадут, образуя оптический центр линзы. Построение изображения произойдет, как и раньше, при помощи каких-либо двух простейших лучей (ср. также рис. 12.19).  [c.299]

При сравнительно небольших частотах (инфракрасные лучи) оптические свойства металла обусловливаются главным образом поведением свободных электронов. Но при переходе к видимому и ультрафиолетовому свету начинают играть заметную роль связанные электроны, характеризующиеся собственной частотой, лежащей в области более коротких длин волн. Участие этих электронов обусловливает, так сказать, неметаллические оптические свойства металла. Так, например, серебро, которое в видимой области характеризуется очень большим коэффициентом отражения (свыше 95%) и заметным поглощением, т. е. типичными оптическими особенностями металла, в области ультрафиолета обладает резко выраженной областью плохого отражения и большой прозрачности вблизи X = 316 нм отражательная способность серебра падает до 4,2%, т. е. соответствует отражению от стекла. Ниже приведены коэффициенты отражения серебра (в процентах) для разных длин волн при нормальном падении  [c.490]


Оба луча о и а лежат в одной плоскости с падающим лучом (плоскость падения и преломления). Колебания в обыкновенном луче перпендикулярны к главной плоскости (плоскости падения), т. е. при любом направлении луча перпендикулярны к оптической оси. Поверхность волны о пересекается с плоскостью падения по окружности. Колебания в необыкновенном луче лежат в главной плоскости, т. е. в плоскости падения, и составляют с осью различный угол в зависимости от направления луча. В соответствии с этим показатель преломления для необыкновенного луча по разным  [c.513]

Когда апертурная диафрагма В расположена вблизи фокальной точки линзы (рис. 7.18,6), изображение диафрагмы в пространстве предметов удалено в бесконечность через центр диафрагмы пройдут те лучи, которые до линзы шли параллельно оптической оси. Главные лучи (через центр диафрагмы) действующих световых пучков, формирующих изображения предметов А и В. перед линзой направлены параллельно оптической оси. Поэтому иа экране изображения предметов А и В. лежащих на разных расстояниях, имеют оданаковые размеры (телецентрнческая перспектива). Изменение расстояния до предмета влияет в этом случае только на резкость изображения, но ие на его размеры. Такая перспектива применяется в измерительных микроскопах.  [c.350]

Вычислеиие габаритных размеров предусматривает расчет хода четырех лучей одного осевого луча, идущего по краю входного зрачка, и трех лучей наклонного пучка лучей — главного луча, верхнего наклонного и нижнего наклонного лучей. Так как и меридиональной плоскости, в которой и происходит рассмотрение хода лучей, существует симметрия относительно оптической оси, то лучи другой половины не вычисляются, а полученные высоты лучей, взятые с обратным знаком, позволяют вычертить систему, полностью заполненную лучами.  [c.353]

НОСТИ изображения. По эгим данным необходимо определить аберрации луча, его зрачковые координаты и другие характеристики. Как и при вычислении входных координат, формулы будут различными для близкого и для удаленного изображения. Необходимо также выделить случай для главного луча пучка. На рис. 3.12 изображены условно последняя поверхность оптической системы ОС, поверхность изображения выходная сфера 5р и два луча — главный и неглавный.  [c.104]

Простейшими из них являются триратроны - разрядники, состоящие из трех электродов, один из которых является вспомогательным - поджигающим. Разнообразие таких устройств, по существу, исчерпывается конструктивными особенностями, такими, как форма и взаимное расположение электродов и главным образом способом расположения поджигающего электрода. Предпринимаются многочисленные попытки гальванически развязать цепи управления коммутатора и его силовые элементы с помощью ионизации одного иаи нескольких промежутков оптическим лучом, пучком заряженных частиц, типовым воздействием, высокочастотным электромагнитным полем и т.п. Ряд таких разрядников (зачастую с экзотическим названием) описан в /24/. Применительно к поставленным нами требованиям коммутатор для электроискрового источника может быть выполнен по любой известной схеме, так как основные параметры - , макс " достигаются для них без труда. Они также малочувствительны к воздействию окружающей среды, чрезвычайно неприхотливы при эксплуатации, дешевы, просты в изготовлении, наладке и ремонте.  [c.36]

При построении изображения малого предмета в тонкой линзе мы пользовались параксиальным пучком света. Кроме того, лучи параксиального пучка составляли небольшие углы с главной оптической осью. Далее, падающий свет сч1ггали монохроматическим, а показатель преломления материала линзы — не зависящим от длины волны падающего света. На практике все эти условия не соблюдаются и возникают соответствующие недостатки оптических систем. Коротко остановимся на некоторых из них.  [c.186]

Сферическая аберрация. В случае тонкой линзы параксиальный пучок, исходящий из точки S, после преломления в линзе пересекает оптическую ось в одной точке. Если же пучок света, исходяншй из источника 5, составляет больнюй угол с главной оптической осью, то лучи, составляющие разные углы, пересекают оптическую ось не в одной точке, а в разных точках, например точки s , s.2, на рис. 7.18. Лучи, более удаленные от центра линзы, сильнее преломляются и пересекают главную оптическую ось на сравии-  [c.186]

Плоскость, содержащая падающий луч и оптическую ось одноосного кристалла, называется главнтлм сечением или главной пло-скостьк ) кристалла. В двуосных кристаллах иод главным сечением понимается плоскость, проходящая через обе оптические оси. Мами не будет рассматриваться вопрос двулучепреломления в двуосных кристаллах. Желающие ознакомиться с двулучепреломлением в двуосных кристаллах могут обратиться к специальной литературе.  [c.226]

Поскольку величины скоростей по лучу и нормали определяются длинами полуосей сечения эллипсоида, ориентированного перпендикулярно соответственно направлениям луча S и нормали Л/, то очевидно, что оптические оси есть направления, перпендикулярные сечениям с одинаковыми длинами полуосей, т. е. круговым сечениям. Из стереометрии известно, что любой эллипсоид в общем случае имеет два круговых сечения, расположенных симметрично относительно его главных осей. На рис. 10.8 показаны эти сечения, которые направлены перпендикулярно осям Ofii и Следовательно, в общем случае кристаллы могут быть двуосными. В частности, при равенстве двух из трех главных значений диэлектрической проницаемости (например, = е, е ) оптическая индикатриса превращается в эллипсоид вращения и кристалл становится  [c.256]

На рисунке 292 показана главная оптическая ось линзы О1О2. Линза дает изображение точки А в точке В. Найдите построением хода лучей положение оптического центра линзы и ее главных фокусов.  [c.293]


При прохождении через линзу один из всех лучен, выходящих из точки А, попадает в точку В по прямо - без изменения направления распространения. Это луч, проходяишй черсг оптический центр линзы. Следовательно, оптический центр лежит на главной оптической оси 0 02 и на прямой АВ, поэтому точка О пересечения прямой АВ и главной оптической оси 0,0.. н является оптическим центром линзы о (рис. 293).  [c.293]

Для нахон дения положения главного фокуса собирающей линзы выберем луч, идущий из точки А параллельно главной оптической оси. Этот луч после преломления в линзе попадает в точку В, как и все остальные лучи, выходящие из точки А. Вместе с тем луч, параллельный главной оптической оси, при выходе из линзы проходит через ее главный фокус, лежащий на главной оптической оси. Следовательно, точка пересечения этого луча с главной оптической осью является главным фокусом линзы. Второй главный фокус расположен на главной оптической оси по другую сторону от оптического центра на таком же расстоянии, как и первым.  [c.294]

Линия, соединяющая центры с( )ерических поверхностей, представляет собой ось симметрии центрированной системы и называется главной оптической осью системы. Теория Гаусса устанавливает ряд так называемых кардинальных точек и плоскостей, задание которых полностью описывает все свойства оптической системы и позволяет пользоваться ею, не рассматривая реального хода лучей в системе.  [c.294]

Изложенная теория идеальной оптической системы носит совершенно общий характер, т. е. применима к аксиально симметричным системам произвольной конструкции. Система оказывается полностью заданной, если известно взаимное расположение четырех кардинальных точек. Положение этих точек в каждой конкретной системе, разумеется, зависит от ее конструкции (от кривизны преломляющих и отражающих поверхностей, их расположения, показателя преломления и т. п.). Существует несколько методов нахождения кардинальных точек. Один из них состоит в последовательном расчете хода лучей, падающих на систему слева и справа параллельно оси. При этом к каждой преломляющей поверхности применяется (формула (71.2) или (71.3). Сущность другого, более употребительного метода, ясна из следующего. Пусть даны две оптические системы и для них известны фокусные расстояния и положения главных точек, причем обе системы расположены на общей оси на некотором известном расстоянии друг от друга тогда можно вычислить (фокусные расстояния и положения кардинальных точек сложной системы, состоящей из этих систем. Таким образом, если сложная система состоит из двух или больщего числа подсистем с известными кардинальными точками, то производя описанный процесс сложения несколько раз, можно определить параметры системы в целом.  [c.300]


Смотреть страницы где упоминается термин Оптические Лучи главные : [c.320]    [c.256]    [c.381]    [c.266]    [c.183]    [c.186]    [c.186]    [c.186]    [c.187]    [c.270]    [c.271]    [c.271]    [c.289]    [c.290]    [c.292]    [c.390]    [c.509]    [c.512]    [c.512]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.323 ]



ПОИСК



Главная оптическая ось

Главные лучи

Лучи Отражение на главные оптической системы

Оптические системы — Главные лучи

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте