Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам Твердость

Хром повышает твердость, прочность и прокаливаемость стали, никель — прочность и пластичность, ванадий и вольфрам — твердость и прочность и делают сталь мелкозернистой, кобальт — жаропрочность. Чтобы получить стали с высокими физико-меха-ническими свойствами, в них вводят одновременно несколько улучшающих добавок.  [c.18]

Нитриды образуют металлы переходных групп (железо, хром, марганец, ванадий, вольфрам, молибден, титан). Высокая твердость азотированного слоя объясняется большой дисперсностью образующихся нитридов, тем больше, чем больше их термическая устойчивость, последняя же тем сильнее, чем меньше электро-  [c.332]


Особенностью рения является его исключительная способность к упрочнению в процессе деформации. При степени деформации 30 - 50% он имеет = 2250 МПа, твердость HV = 8000 -9000 МПа вольфрам имеет Ств = 2000 МПа, твердость HV = 3500 -4000 МПа. Такой способностью к упрочнению (наклепу) при деформации не обладает ни один металл.  [c.97]

Хром, молибден и вольфрам при 20 °С устойчивы при повышенных температурах они окисляются, особенно молибден и вольфрам, оксиды которых летучи. При высокой температуре эти металлы реагируют с азотом и углеродом их карбиды имеют высокие твердость и температуру плавления.  [c.111]

Сплавы вольфрама с молибденом. Вольфрам и молибден образуют непрерывный ряд твердых растворов (фиг. 2). Твердость и электросопротивление  [c.453]

Сравнение полученных нами данных о твердости вольфрама, молибдена и ниобия (табл. 2) показывает, что при высоких температурах вольфрам приблизительно в 3 раза тверже молибдена и значительно тверже ниобия.  [c.35]

Свойства тантала под действием облучения изменяются за счет смещения атомов и их превращения в вольфрам в результате ядерной реакции. Проводили испытания на растяжение, изгиб и измерение твердости облученного листового тантала [31]. Доза обл чения примерно соответствует дозе, требующейся для образования в тантале 1,5—3,0 вес.% вольфрама при соответствующей ядерной реакции. Предел прочности и предел текучести тантала заметно увеличивались в результате облучения. Эти результаты указывают, что основная часть увеличения прочности может быть приписана влиянию нарушений, производимых быстрыми нейтронами, а вклад, обусловленный превращением указанного количества тантала в вольфрам, сравнительно невелик. В табл. 5.13 приведены прочностные характеристики тантала до и после облучения.  [c.270]

Большое значение имеет также содержание легирующих элементов. Установлено, что никель, алюминий и медь несколько снижают твердость борированного слоя, а хром, марганец, вольфрам  [c.46]

Вольфрам является наиболее тугоплавким металлом. Его характерные особенности — высокая прочность, низкая пластичность и большая плотность. Это один из самых трудных в обработке метал-лоВ вследствие не только высокой прочности и хрупкости, но и истирающих (абразивных) свойств. Из-за хрупкости возможны разрушения тонкостенных деталей при закреплении на станке и сколы на кромках при обработке. Детали из него получаются горячим или холодным прессованием, а также литьем с последующим деформированием. Из-за высокой твердости обработку часто производят с предварительным подогревом. Для обработки применяют твердосплавные инструменты с пластинками типа ВК. Скорости резания при черновом точении не превышают 3—10 м/мин, а при чистовом — 30— 40 м/мин. Шлифование ведется кругами из зеленого карбида кремния на керамической связке, твердостью М2—СМ1 с обильным охлаждением. Вольфрам при этом весьма склонен к образованию трещин.  [c.38]


Марка углерод хром вольфрам прочие элементы Твердость нв  [c.25]

В настоящее время в качестве добавок употребляют хром, никель, молибден, вольфрам, бериллий, титан, ванадий и другие металлы. Эти присадки резко меняют свойства стали, повышают ее прочность, твердость, износостойкость, жаро-  [c.148]

Для изготовления контактов применяют тугоплавкие металлы вольфрам, молибден, рений. Они имеют наибольшую температуру плавления и твердость среди металлов, применяемых для контактов.  [c.303]

За последнее время в приборостроении все шире стала распространяться обработка ультразвуком твердых, труднообрабатываемых обычными методами материалов. Ультразвуковое резание целесообразно применять как для обработки твердых, неметаллических материалов (стекло, керамика, кварц, драгоценные камни, специальная керамика и т. д.), так и для обработки деталей из твердых металлокерамических и металлических материалов (твердые сплавы, ферриты, германий, кремний и другие полупроводниковые материалы, вольфрам, закаленные на высокую твердость стали, постоянные магниты и т. д.).  [c.226]

При легировании стали карбидообразующими элементами в ее структуре образуются включения карбидов. Карбидообразующие элементы могут образовывать самостоятельные карбиды или замещать железо в цементите. При избытке карбидообразующих элементов по отношению к углероду эти элементы входят в твердый раствор. К карбидообразующим элементам относятся хром, вольфрам, ванадий, молибден, титан и ниобий. Включения карбидов упрочняют сталь и повышают ее твердость.  [c.50]

Отпуск оказывает значительное влияние на механические свойства легированной конструкционной стали повышает предел текучести, вязкость и пластичность при некотором снижении прочности. Интенсивность снижения прочности зависит от легирующих элементов. Кремний, кобальт, хром, молибден, вольфрам и ванадий задерживают снижение твердости и прочности.  [c.403]

Вольфрам способствует повышению и сохранению высокой твердости. Наиболее широкое применение стали, легированные вольфрамом, находят при изготовлении режущего инструмента (сверла, метчики, ножовочные полотна и др). При высоком содержании вольфрама получают быстрорежущие стали.  [c.409]

Основными легирующими элементами быстрорежущих сталей, обеспечивающими их теплостойкость, являются в первую очередь вольфрам и его химический аналог — молибден. Сильно повышает теплостойкость (до 645—650 °С) и твердость после термической обработки (67—70 ННС) кобальт и в меньшей степени ванадий. Ванадий, образуя очень твердый карбид УС, повышает износостойкость инструмента, но ухудшает шлифуемость.  [c.352]

В сравнении с другими металлами вольфрам имеет большую твердость, высокие значения предела прочности при растяжении, предела текучести и модуля упругости и малую величину относительного удлинения.  [c.36]

Вольфрам обладает высокими прочностью и твердостью при комнатной и повышенной температурах. Предел прочности при растяжении для очень тонкой вольфрамовой проволоки выше, чем у любого из материалов, полу-  [c.147]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

На рис. 280 показаны изменения свойств феррита (твердость, ударная вязкость) при растворении в нем различных элементов. Как видно из диаграмм, хром, молибден, вольфрам упрочняют феррит меньше, чем никель, кремний и марганец. Молибден, вольфрам, а также марганец и кремний (при иали-  [c.349]

Приведенные на рис. 280 данные относятся к медленно охлажденным сплавам. Свойства феррита, содержащего в растворе кремний, молибден или вольфрам, практически не зависят от того, как охлаждался сплав — быстро или медленно, тогда как твердость феррита, легированного хромом, марганцем и никелем, после быстрого охлаждения оказывается более высокой, чем после медленного охлаждення.  [c.351]


Все легированные стали, особенно содержащие карбидообразующие элементы, после отпуска при одинаковых сравниваемых температурах обладают более высокой твердостью, чем углеродистые стали (рис. 122, а), что связаг 0 с замедлением распада мартенсита, образованием и коагуляцией карбидов. В сталях, содержащих большое количество таких элементов, как хром, вольфрам или молибден, в результате отпуска при высоких температурах (500—600 °С) наблюдается даже повышение прочности и твердости, связанное с выделением в мартенсите частиц специальных карбидов, повы-и1ающих сопротивление пластической деформации (рис. 122, а).  [c.188]

Поопе термической обработки вольфрамистые стали обладают повышенной твердостью, прочностью и высокой ударной вязкостью. Вольфрам добавляют к конструкционным хромоникелевым и жаропрочным сталям, а также он является основным легирующим элементом в HH TpyMeHTiLibHHx И быстрорежущих сталях Р18 (W= 18%).  [c.96]

Электроконтактные сплавы вольфрама с медью и серебром. Вольфрам и медь, вольфрам и серебро практически нерастворимы друг а друге как в твердом, так и жидком состоянии. Вследствие этого сплавы W—Си и W—Ag нельзя получить простым сплавлением компонентов. Металлокерамическим способом получают псевдосплавы, представляющие собой по структуре частицы вольфрама, сцементированные медью или серебром. Сплавы подоб1шй структуры. сочетают твердость, износостойкость и сопротивление электроэррозни — свой-  [c.455]

Твердость и износостойкость слсев, образуюпщхся в результате наплавки электродами, обусловливается легированием наплавляемого слоя содержащимися в электроде компонентами, которыми служат такие элементы, как хром, молибден, вольфрам, титан, бор и др.  [c.567]

Контакты на вольфрамовой основе. Вольфрам обеспечивает твердость, теплостойкость, стойкость при искрении, коррозионную стойкость и несвариваемость. Компонентом, обеспечивающим высокую электропроводность и теплопроводность, является Ag (10—40%) или Си (10—40%). Применяются также вольфрамомедноникелевые контакты (до 20% Си и Ni).  [c.600]

Вольфрам применяют также для изготовления контактов. К достоинствам вольфрамовых контактов можно отнести устойчивость в работе, малый механический износ ввиду высокой твердости материала, способность противостоять действию дуги и отсутствие при-вариваемости вследствие большой тугоплавкости, малую подверженность электрической эрозии (т. е. износу с образованием кратеров и нзростов в результате местных перегревов и плавления метялла). Недостатками вольфрама как контактного материала являются трудная обрабатываемость, образование в атмосферных условиях оксидных пленок, необходимость применять большие давления для обеспечения малого электрического сопротивления контакта.  [c.214]

Контакты наконечников делают ия того же материала или из меди с 50% карбида вольфрама в зависимости от особенностей прибора. Последний материал имеет большую твердость и высокое сопротивление механическому износу. Контакты в преобразователях нагрузки больншх трансформаторов, в селекторных разъединителях и в реверсирующих переключателях работают в условиях маломеняющегося тока, медные ножи не имеют прокладок, контакты наконечников делают также из медных сплавов. Переключение тока нагрузки осуществляется переключателем, который имеет вспомогательный разрывной контакт из материала системы медь — вольфрам. На рис. 6 показаны некоторые типовые контакты нагруженных преобразователей.  [c.428]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Минералокерамические твердые сплавы обладают твердостью HRA 92—93 и сохраняют режущие свойства при температуре до 1200° С. Этот инструментальный материал ие со,держит таких дефицитных и дорогостоящих металлов, как вольфрам, кобальт и титан, его основой является спеченная окись алюминия. Из минералокерамики изготовляются иластипки двух марок ТВ—48 (термокоруид) и ЦМ—322 (микролит), которые, так же как и пластинки из других инструментальных материалов, при.меняются при различных видах обработки.  [c.328]

Прочность карбидно-металлических сплавов сохраняется до более высоких температур, чем это наблюдается в жаропрочных сплавах на основе металлов. В отечественной и зарубежной технике сравнительно давно используются сплавы на основе карбидов вольфрама, титана, хрома и др. [5, 23] с такими металлическими связками, как никель, кобальт, молибден, вольфрам и др. Например, сплав, состоящий из 47,5% Т1С, 2,5% СГ3С2 и 50% никеля имеет плотность 6,4 г см , твердость HV 720 кПмм и предел прочности при изгибе а э = 161 кг мм .  [c.423]

П.штина — вольфрам. Вольфрам значительно повышает температуру плавления сплава и его твердость. Для контактов и свечей зажигания применяют сплавы с 4—5 % W, имеющие высокое удельное электрическое сопротивление и твердость. Они достаточно пластичны — обрабатываются пластически в горячем и холодном состоянии (поддаются ковке, прокатыванию, волочению на холоде) стойки к атмосферной коррозии склонны к иглообразованию имеют минимальный ток дуги несколько меньший, чем у платины.  [c.302]

Кремний вводится для повышения предела текучести и сопротивления стали отпуску. Однако в связи с отрицательным влиянием на технологичность при выплавке, разливке и ковке содержание кремния должно быть ограничено [99]. Снижение содержания кремния в стали 9Х2СВФ с 1,4—1,6 до 0,8% способствует повышению технологичности при сохранении высокой теплостойкости [99]. Вольфрам в количестве 0,4—0,6% необходим для повышения прокаливаемости и твердости карбидной фазы. Увеличение концентрации вольфрама до 1,5—2,0% значительно повышает устойчивость против перегрева и отпуска [99].  [c.80]


На основании отборочных исследований установлено, что для совместного легирования валковых сталей с пониженным содержанием углерода к перспективным легируюш,им элементам относятся кремний в количестве 0,8—1,2%, обеспечивающий повышение прокаливаемости и прочности при удовлетворительной технологичности в процессе ковки и термической обработки ванадий в количестве 0,1—0,2%, повышающий устойчивость против лерегрева и отпуска, твердость и дисперсность карбидной фазы при небольшом повышении прокаливаемости вольфрам в количестве 0,3—0,5%, обеспечивающий наибольший эффект упрочнения, повышение прокаливаемости, однако несколько сни-жа1бщий технологичность при термической обработке.  [c.84]

Материалы группы VI (табл. 6) включают наплавки и сплавы, содержащие, кроме углерода и хрома, ванадий и вольфрам в качестве основных легирующих элементов. Наплавка № 83 (УЗХ2ФВ8) обладает, несмотря на наличие в ней 7,5 %i W и 0,4% V, весьма низкой износостойкостью, что объясняется малым содержанием углерода. Материал имеет структуру феррита и перлита, обладает низкой твердостью и соавнительно высокой ударной вязкостью.  [c.45]

На диаграмме рис. 2 наиболее износостойким материалом, расположившимся на прямой для чистых металлов, был вольфрам. При испытании твердых материалов оказалось, что на тон же прямой лежат сложные карбиды хрома и железа (ТДХ, твердость 1770 кг1мм ) и эвтектиче-окий сплав W и W2 (твердость 2570 кг1мм ), как это видно из диаграммы рис. 3. Однако у многих материалов с высокой твердостью износостойкость оказывается значительно более низкой по сравнению стой, которая соответствует этой общей линии для чистых металлов. В одних случаях это связано с неоднородностью структуры, в других — можно предположить влияние трещин в твердом слое (электролитически бори-рованный слой стали). Это может быть связано с отличным типом химической связи, как отмечено для таких полуметаллических материалов на кремний и германий.  [c.46]

Сопоставляя результаты испытаний эрозионной стойкости различных металлов, проведенных разными способами, можно констатировать следующее. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые стали. Причем аустенитные хромоникелевые стали имеют значительно более высокую эрозионную стойкость, чем перлитные. Низкую эрозионную стойкость имеют чугуны, углеродистые стали, никель и чистый титан. Наиболее низкая эрозионная стойкость зафиксировала у алюминия. В пределах определенных групп материалов (углеродистые стали, хромоникельные аустенитные стали и т. п.) эрозионная стойкость тем выше, чем больше твердость металла.  [c.46]

Для подавления обратимой отпускной хрупкости сталь легируют молибденом (или вольфрамом), что очень важно для крупных изделий, в которых даже при охлаждении в воде от температур отпуска нельзя устранить эту хрупкость. Кроме того, молибден (вольфрам) повышает прокаливаемость (особенно в сочетании с. никелем) и устойчивость стали отпуску. Молибден улучшает механические свойства стали после цементации (нитроцементации) и повышает твердость и прокаливаемость цементованного слоя, так как не склонен к внутреннему окислению при взаимодействии с газовых карбюризатором.  [c.261]

По твердости, пределу прочности и модулю упругости некристаллизованный молибден, как и вольфрам, относится к металлам с высокими механическими свойствами.  [c.40]

Основное влияние вольфрама на сталь определяется его способностьк сохранять высокую твердость при повышенных температурах, называемую красностойкостью . Это свойство усиливается в присутствии хрома и еще больше в присутствии кобальта, хотя и с некоторой потерей ударной вязкости, Помимо применении к производстве быстрорежущих сталей для режущих инструментов, вольфрам применяется при горячей обработке сталей, окончательной обработке (полировании) и волочении жаростойких и плохо деформируемых сталей.  [c.158]


Смотреть страницы где упоминается термин Вольфрам Твердость : [c.392]    [c.434]    [c.256]    [c.140]    [c.295]    [c.296]    [c.6]    [c.267]    [c.188]    [c.150]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.422 ]



ПОИСК



Вольфрам

Вольфрам Свойства 3 — Твердость



© 2025 Mash-xxl.info Реклама на сайте