Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Висмут Механические свойства

Часто в оловянистую бронзу вводят в небольшом количестве цинк, свинец и др. Цинк, вводимый в состав оловянистых бронз, улучшает их литейные свойства, уменьшает интервал кристаллизации, не нарушая однородности сплава, и не влияет существенным образом на механические свойства. Фосфор содержится в бронзе в незначительных количествах при его содержании в сплаве не свыше 1% он улучшает литейные, антифрикционные и механические свойства. Свинец вводится в основном для улучшения антифрикционных свойств оловянистой бронзы. Суммарное содержание других примесей (висмут, железо, сурьма) в оловянистых бронзах допустимо в пределах 0,2.—0,4%.  [c.250]


По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

Примеси, как правило, понижают пластичность меди, однако при одновременном присутствии различных примесей может произойти улучшение свойств. Так, например, при наличии в меди свинца примесь кислорода приводит к образованию оксидов свинца в виде округлых включений в теле зерен, поскольку теплота образования оксидов свинца больше, чем оксидов меди. Аналогичный процесс происходит и при наличии в меди висмута. Данные о влиянии небольших количеств различных элементов на механические свойства при 20 °С отожженных образцов технической меди приведены ниже [1].  [c.29]

Механические свойства висмута при 20 °С =34 ГПа 0=12 ГПа, р=0,33, НВ 9.  [c.62]

Примеси висмута, свинца, серы и др. незначительно влияют на электропроводность меди, но резко снижают ее механические свойства и являются вредными.  [c.158]

С увеличением содержания висмута все исследованные механические свойства чугуна и микротвердость структурных составляющих практически не изменяются (рис. 14).  [c.71]

Модифицирующие смеси алюминий—бор—висмут и алюминий—бор—сурьма достаточно полно нейтрализуют вредное влияние хрома на. торможение процесса графитизации [24, 36]. Даже при содержании 0,18—0,20% Сг ковкий чугун имеет достаточно высокие механические свойства, хорошую обрабатываемость и не требует длительного отжига (рис. 13).  [c.128]

К числу примесей, оказывающих отрицательное воздействие на образование шаровидного графита и значительно понижающих механические свойства чугуна, относятся следующие титан, свинец, сурьма, висмут, олово, мышьяк, алюминий, медь.  [c.154]

Небольшие добавки висмута к сплавам алюминия, ковким чугунам и сталям улучшают их механические свойства. Применение висмута (- О.О " )) при отливке сталей улучшает их обрабатываемость и позволяет производить  [c.132]


Введение 0,1...0,2 % тугоплавких элементов, таких как титан, молибден, ванадий, цирконий, бор, оказывает модифицирующий эффект и заметно измельчает зерно, а добавки церия нейтрализуют вредное влияние висмута, сурьмы и свинца на механические свойства сплавов.  [c.253]

Медь обладает хорошей технологичностью. Она прокатывается в тонкие листы и ленту, из нее получают тонкую проволоку, медь легко полируется, хорошо паяется и сваривается. Примеси кислорода, водорода, свинца и висмута ухудшают свариваемость меди. Применение специальных керамических флюсов улучшает качество сварного шва, приближая его физические и механические свойства к характеристикам основного металла.  [c.302]

Гидроэрозия меди. Эрозионную стойкость технически чистой меди исследовали на образцах, содержащих 99,92% меди (остальное различные примеси). Пресная вода почти не вызывает коррозии такой меди. Скорость коррозии в морской воде также незначительна. Она составляет примерно 0,05 мм в год. Присутствие в -меди кислорода даже в небольших количествах отрицательно влияет на ее механические свойства. Такие примеси, как висмут, свинец и сера, резко снижают прочностные свойства меди в микрообъемах.  [c.238]

В табл. 9.2—9.4 представлены результаты испытаний на вибрационной установке Мичиганского университета [19—21] с вибратором, имеющим экспоненциальный профиль. Испытания проводились при низких и повышенных температурах, причем образцы погружались в воду, жидкий сплав свинца с висмутом и ртуть. В табл. 9.5—9.7 приведены механические свойства материалов при температурах 21, 260 и 815 °С. Разрушение оценивалось по средней глубине проникновения, а также по потерям веса образца. Эта средняя глубина проникновения определялась как отношение потерь объема образца к площади его поверхности, подвергавшейся действию кавитации. По существу она представляет собой удельную потерю объема. В таблицах приведена средняя скорость глубины проникновения, представляющая собой наклон кривой зависимости средней глубины проникновения от времени для материалов, имеющих линейную зависимость потерь объема от времени (обычно за исключением самого начального периода испытаний), или средняя глубина проникновения, деленная на время испытания после продолжительного испытания материалов, не имеющих такой линейной зависимости. На фиг. 9.13, 9.24 и 9.25 представлены кривые разрушения в зависимости от времени для некоторых материалов, перечисленных в табл. 9.5. Все эти результаты получены при испытаниях в воде при 21 °С. На фиг. 9.13 приведены данные для холоднокатаных и отожженных образцов медноцинковых и медноникелевых сплавов. По оси ординат отложены потери веса. На фиг. 9.24 приведены данные для углеродистой стали и ряда тугоплавких сплавов, а на фиг. 9.25 — для чистой меди и никеля в холоднообработанном и отожженном состояниях. По ординатам на фиг. 9.24 и 9.25 отложена средняя глубина проникновения.  [c.479]

Механические испытания образцов после пребывания в агрессивных средах показали, что сплавы с примесями сурьмы, мышьяка и висмута существенно не изменяют свои свойства. Для сплавов с цинком, алюминием, медью и кадмием наблюдалось значительное изменение механических свойств (табл. 3).  [c.31]

К мягким припоям относятся такие, температура плавления которых не превышает 400 °С, а механические свойства, как правило, довольно низкие (Ов до 70 МПа) поэтому спаянную деталь не следует подвергать механическим нагрузкам. В качестве мягких припоев применяют сплавы легкоплавких металлов свинца, олова, висмута, кадмия, чаще всего свинца и олова. Наиболее легкоплавким сплавом в системе РЬ — 5п является эвтектический, содержащий 62% Зп и 38% РЬ, т. е. 1/3 свинца поэтому в производстве он получил название третника, а его стандартное обозначение ПОС-61 (припой оловянно-свинцовый, 61% 5п). На практике находят применение припои ПОС-90, ПОС-50, ПОС-30, ПОС-40, застывающие в ин-  [c.172]

Для припоев, богатых висмутом, характерно увеличение в объеме при переходе из жидкого состояния в твердое, а также при охлаждении после затвердевания. Припои с висмутом слабо смачивают некоторые металлы, например железо, конструкционные стали и отличаются сравнительно высоким электросопротивлением и низкими механическими свойствами. Для улучшения смачиваемости припоями эти металлы перед пайкой оцинковывают или лудят оловянно-свинцовым припоем. Висмутовыми припоями паяют чаще всего медь (табл. 33).  [c.181]


Свариваемость меди в значительной степени зависит от ее чистоты чем меньше содержится в меди вредных примесей, тем выше ее свариваемость. Лучшей свариваемостью обладает раскисленная медь, содержащая не бо-. лее 0,01% кислорода. Вредными примесями в меди, снижающими механические свойства и ухудшающими ее свариваемость, являются также сера, свинец и висмут.  [c.195]

Самое неблагоприятное влияние на механические свойства меди оказывают висмут и свинец. Оба металла не образуют с нею твердых растворов и поэтому в процессе кристаллизации располагаются в виде сетки между отдельными кристаллами меди, что приводит к понижению сцепления между ними и, как следствие, к понижению механических свойств металла.  [c.17]

Механические свойства меди зависят от содержания в ней примесей. Вредной примесью является висмут, если его более 0,05%. В небольших количествах допускается в меди алюминий, сурьма, олово, цинк и никель. Чтобы получить латунь с хорошей пластичностью, содержание цинка должно быть не более 30—32%.  [c.11]

Вредными примесями в меди, снижающими механические свойства и ухудшающими свариваемость ее, являются висмут, свинец, сера и кислород. Содержание висмута в меди допускается не более 0,003%, серы не более 0,1%. Свинец не растворяется в меди и при содержании до десятых долей процента вызывает ее красноломкость. При обычных температурах в указанных пределах свинец не оказывает вредного влияния на свойства меди.  [c.552]

Характеризовать влияние висмута, учитывая его механические свойства и температуру плавления, на пластичность меди при низких и при повышенных температурах.  [c.340]

Второй вариант (рис. 153) состоит в установке пуансонов по матрице и последующей заливке посадочных мест сплавом, состоящим из 48% висмута, 28,5% свинца, 14,5% олова и 9% сурьмы. Несмотря на температуру плавления около 120° С, механические свойства этого сплава обеспечивают посадку пуансонов, надежную даже при тяжелых условиях работы. Перед заливкой посадочные места обрабатывают с зазором между заливаемыми поверхностями в пределах 1—1,5 мм, на них прорезают поперечные канавки, а поверхности, соприкасающиеся со сплавом, травят и лудят. За-150  [c.150]

В черновой меди, выплавленной из первичного или вторичного сырья, 0,6—4% примесей, главные из которых железо, сера, никель, висмут, мышьяк, сурьма, золото, серебро, селен, теллур и кислород. Многие из этих элементов ухудшают механические свойства металла, особенно его пластичность, и все, исключая серебро, снижают электропроводность. В черновой меди содержится, например, 400 г/т золота и 1000 г/т серебра. Благородные металлы, а также селен и теллур представляют значительную ценность, их необходимо извлечь при рафинировании в богатые отходы.  [c.111]

Фосфор значительно влияет на механические свойства оловянных бронз. В сплавах, обрабатываемых давлением, содержится не свыше 0,5% Р. При таком соотношении оловянные бронзы обладают оптимальными механическими и технологическими свойствами, имеют повышенные предел упругости, модуль упругости и предел усталости, достигающий 25—28 кгс/мм при 100 млн. циклов. При повышенном содержании фосфора (более 0,5%) оловянные бронзы не поддаются горячей обработке давлением и легко разрушаются, так как при температуре горячей прокатки фосфид-ная эвтектика находится в жидком состоянии и действие ее аналогично действию свинца или висмута на однофазные сплавы при обработке их в горячем состоянии.  [c.159]

Высокая пластичность меди подтверждается также высоким значением показателя т (220) в уравнении (17) [37]. Тем не менее монотонность изменения механических свойств меди с температурой, отмечаемая рядом авторов (60, 195, 196], может нарушаться аномалиями, связанными с наличием примесей, например висмута, зернограничных и других явлений. Так как в основе этих явлений лежат процессы диффузии, то при медленных испытаниях температурные интервалы и амплитуды аномалий возрастают. Это мы отмечали выше у ряда металлов (Mg, А1, N1) то же характерно, например, для кислородной меди МК [197].  [c.74]

Рис. 103. Зависимость механических свойств висмута (99,999%) [297] а — напряжения а от степени деформации е при разных температурах, °С, и скоростях деформации е, сек- 1 — 162 210- 2 — 162 1,5-10- 3 — 162 1,5-10- 4 — 108 2-10- 5 — 108 1,5-10- 6 — 108 1,5-10-> 7 — 53,5 2-10- — 53,5 1,5-10- S — 53,5 1,5-10- /О — ( — ) 2-10 П 1,510- — ( —1) 1,5-10-> 13 — Рис. 103. Зависимость механических свойств висмута (99,999%) [297] а — напряжения а от <a href="/info/27155">степени деформации</a> е при разных температурах, °С, и скоростях деформации е, сек- 1 — 162 210- 2 — 162 1,5-10- 3 — 162 1,5-10- 4 — 108 2-10- 5 — 108 1,5-10- 6 — 108 1,5-10-> 7 — 53,5 2-10- — 53,5 1,5-10- S — 53,5 1,5-10- /О — ( — ) 2-10 П 1,510- — ( —1) 1,5-10-> 13 —
При нагреве медь склонна к образованию крупнозернистой структуры в шве и околошовной зоне, что снижает механические свойства сварного соединения. Наличие в меди примесей серы, сурьмы, висмута, мышьяка и свинца даже в небольших количествах ухудшает ее свариваемость.  [c.55]

В Великобритании широко используется около девяти сортов свинца, составы которых представлены в табл. 2.11. Из всех перечисленных примесей только цинк и висмут ускоряют коррозию в большинстве сред, тогда как медь, теллур, сурьма, никель, серебро, олово и мышьяк (часто вводимые в сплавы для улучшения некоторых специальных механических свойств) могут даже повысить коррозионную стойкость, а в худшем случае снижают ее лишь незначительно, по крайней мере к тем средам, для которых предназначен данный сорт свинца.  [c.115]

Сурьма, мышьяк, висмут, сера для специальных бронз, алюминиевых и пр. являются вредными добавками, понижающими технологические и механические свойства сплавов.  [c.83]

Перед заливкой в формы чугун в раздаточных ковшах модифицируют с целью ускорения процесса отжига чугуна в отжигательных печах и улучшения механических свойств. В качестве модификаторов применяют алюминий, висмут и бор.  [c.324]

Мышьяк в небольших количествах не оказывает влияния на механические свойства меди. При содержании мышьяка в пределах 0,3—0,5% повышается жаростойкость и коррозионная стойкость меди, а также частично нейтрализуется вредное влияние висмута, сурьмы и кислорода.  [c.102]


В качестве легкоплавких припоев применяют в основном сплавы на основе олова и свинца различного состава, от которого зависят и свойства припоев. Для получения специальных свойств припои легируют сурьмой, серебром, висмутом, кадмием. Серебро и сурьма повышают, а висмут и кадмий понижают температуру планления сплавов. Олово и свинец дают диаграмму эвтектического типа. Чем меньше интервал кристаллизации, тем выше жидко-текучесть сплава и меньшая выдержка требуется для затвердевания припоя в соединении, что нужно учитывать при выборе припоя в каждом конкретном случае. От интервала кристаллизации зависит также герметичность паяных соединений. Широкий интервал кристаллизации способствует получению пористых негерметичных соединений. Механическая прочность припоев сохраняется в определенном интервале температур. С повышением и понижением температуры механические свойства ухудшаются. При низких температурах (от -—30 до —60° С) происходит резкое снижение ударной вязкости, особенно при большом содержании олова. Прочность припоев при повышении температуры также снижается. Для припоев  [c.254]

Металлид П1зА1 превосходит промышленные никелевые сплавы по жаростойкости, но отличается от них малыми прочностью (Ов=300-р -Ь400 МПа) и пластичностью. Легирование его хромом, вольфрамом, титаном и другими элементами позволяет улучшить механические свойства даже при наличии примесей (до 0,003 % каждой) серы, фосфора, свинца, висмута и сурьмы (табл. 85).  [c.189]

Механические свойства индия и его двойных сплавов со свинцом, оловом, кадмием и висмутом изучались в институте им. Баттела 138, 391. Механические свойства чистых металлов приведены в табл. 4.  [c.227]

Нерастворимые элементы РЬ и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270 °С), располагаюш иеся по границам зерен основной фазы, они вызывают красноломкость. Причем вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001 %. Вредное влияние свинца также проявляется при малых его концентрациях (< 0,04 %). Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования. 3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, СигО) СигЗ), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в водороде вызывает водородную болезнь , которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.  [c.303]

Чистый свинец очень мягкий малопрочный металл, по-isTOMy его чаще употребляют как обкладочный материал. Применяемые в химической промышленности свинцовые трубы обычно нуждаются в поддерживающих каркасах. Сплавы свинца с сурьмой (до 1 %) и висмутом (до 0,2%) имеют значительно более высокие механические свойства по сравнению с чистым свинцом, хотя химическая стойкость их в кислотах несколько ниже по сравнению с чистым свинцом.  [c.290]

Сера и висмут влияют на механические свойства меди, обусловливая ее хла-доломкость, а сера, кроме  [c.113]

К другой группе относят эффекты, которые вызываются в основном обратимыми физическими и физико-химическими процессами, приводящими к понижению свободной поверхностной энергии твердого тела. Эти эффекты приводят к более или менее значительному изменению самих механических свойств материала. Понижение прочности и пластичности твердых тел в результате физико-химического влияния окружающей среды и соответствующего снижения свободной поверхностной энергии тела называется эффектом Ребиндера — по имени П. А. Ребиндера, который в 1928 г. открыл и впервые исследовал этот эффект. Эффект Ребиндера может проявляться на любых твердых телах — кристаллических и аморфных, сплошных и пористых, металлах и полупроводниках, ионнных и ковалентных кристаллах, стеклах и полимерах. В качестве примера проявления эффекта Ребиндера можно назвать значительное понижение прочности стекла или гипса вследствие адсорбции водяных паров. Другой пример — медь, покрытая тонкой пленкой расплавленного висмута, утрачивает присущую ей высокую пластичность и хрупко разрушается при напряжении, которое намного ниже, чем при растяжении на воздухе.  [c.228]

Как установил Фрёлих [466], окисление сплавов, содержащих марганец, никель, кремний, олово, титан и цинк, также сопровождается образованием подокалины, богатой медью и содержащей включения окислов примеси, которые отражаются на механических свойствах сплава. Подобная же картина справедлива и для сплавов систем медь — кобальт — кремний [801], медь — кобальт [802], медь — висмут и медь — мышьяк [502] Как уже отмечалось в гл. 2, процесс образования подокалины подробно исследовали Райне с сотрудниками [503], к работе которых можно обращаться за сведениями по этому вопросу.  [c.348]

Технически чистая медь, применяемая в промышленности, содержит примеси, как-то висмут, сурьму, мышьяк, железо, никель, свинец и др. Марка меди зависит от количества примесей, которых в меди содержится до 1%. Медь обладает высокой темплопроводностью и электропроводностью. Температура плавления меди 1084°. Медь весьма пластична, широко применяется в электротехнике, в химическом машиностроении и других областях промышленности. В табл. 25 приведены химический состав и механические свойства меди.  [c.47]

На практике в качестве модификаторов для серого чугуна используют ферросилиций, силикокальций, редкоземельные элементы с церием и иттрием, теллур, висмут, бор и др. Для получения чугуна с шаровидным графитом применяют магний и церий. Серые чугуны модифицируют с целью получения износостойкой структуры, повышения механических свойств. При этом форма графита может остаться пластинчатой или перейти в вермнкулярную или шаровидную. Ковкие чугуны модифицируют для сокращения цикла отжига и получения графита, близкого по форме к шаровидной. Модифицирование твердыми добавками осуществляют различными способами (рис. 15.8).  [c.142]

Примеси в свинце оказывают значительное влияние на его коррозионную стойкость и механические свойства. Установлено, что одни и те же примеси могут увеличивать или уменьшать скорость коррозии свинца в сернокислых средах в зависимости от температуры и концентрации раствора- Мышьяк сообщает свинцу хрупкость, висмут понижает кислотосточкость, цинк и кадмий ухудшают химическую стойкость свинца, но повышают его твердость, олово увеличивает прочность свинца. Серебро, никель и медь повышают стойкость свинца в серной кислоте в начале коррозионного процесса, но с течением времени эти примеси выделяются на поверхности металла—образуются микроэлементы, вследствие чего коррозия ускоряется. Теллур понижает химическую стойкость свинца, и поэтому теллуристый свинец не применяется в химической промышленности, а используется лишь для кабельных оболочек.  [c.152]

К К. относят также сплавы несколько иного состава, а именно с 60—45% Си, 40— 55% N1, О—1,4% Мп, 0,1% С и нек-рым содержанием Ре. Электропроводимость К. с 54% Си и 46% N1 при 18° равна 1,99 жо-см. Термоэлектродвижущая сила пары константан 1 платина с содержанием никеля при указанных выше условиях для сплава 59% Си и 41% N1 равна -3,04 аУ. Механические свойства К. указаны в Спр. ТЭ, т. II. Сводка нек-рых данных о медно-никелевых сплавах типа К. дана в таблице. Константаново-медная (40 аУ/°С) и константаново-желез ная (50 аУ/°С) термоэлектрические пары-одни из самых удобных для измерения <° по своей значительной эдс, в сочетании со стойкостью в отношении довольно высоких °(до 900°), при которых применение висмута уже недопустимо. Константаново-хромо-никелевая пара (хромоникель 85,3% N1 и 12,5% Сг остальное—Ре), по указанию Р. В. Вудверда и Т. Ф. Гаррисона, в течение 20 час. выдерживает <° в 1 000°, давая показания при измерении 4°, колеблющиеся в пределах 10° однако К. делается после этой службы хрупким и ломким. Срок службы к может быть удлинен, но незначительно, защитным покрытием из асбеста и смеси каолина с растворимым стеклом. Констан-тановые пары применяются также для ген( -рирования термоэлектрич. токов. По указанию В. Фолькмана, наиболее выгоден К. ив 55% Си и 45% N1, но вследствие нек-рых трудностей его изготовления можно пользоваться К. из 30% Си и 70% N1. С такими пйрами Фолькман получал токи в 25—40 А.  [c.438]



Смотреть страницы где упоминается термин Висмут Механические свойства : [c.358]    [c.170]    [c.38]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.441 ]

Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Висмут

Висмут Свойства



© 2025 Mash-xxl.info Реклама на сайте