Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технический компрессор

Рассмотрение процессов получения сжатого воздуха, приведенное в 18, относилось к идеальному компрессору, не имеющему вредного пространства. Обращенный идеальный компрессор представлял собой идеальную воздушную машину. Реальный технический компрессор отличается от этой р модели многими чертами, влияние которых мы сейчас исследуем.  [c.107]

Описание значительно сократится и станет яснее, если мы добавим рисунок (наглядное изображение) этой детали. По рисунку детали с проставленными на нем размерами и записями технических требований к готовой детали значительно быстрее можно уяснить, а затем изготовить эту деталь. Но так можно поступить с очень простой деталью, например втулкой. Для бол ее сложных деталей, например кривошипа и поршня компрессора, такое описание окажется недостаточным. Здесь только одним наглядным изображением, особенно если  [c.7]


Предельные отклонения размеров здесь даются исходя из технических условий на компрессор. К таким размерам относятся размер 30 0,1 — от дниш,а поршня до оси отверстия под палец, размер 98 0,1 — длина шатуна, размер 26 0,1 — плечо кривошипа.  [c.110]

Описание значительно сократится и станет яснее, если мы добавим рисунок (наглядное изображение) этой детали. По рисунку с имеющимися на нем размерами детали и техническим требованиям к готовому изделию можно намного быстрее изготовить эту деталь. Для более сложных деталей, например кривошипа и поршня компрессора, такое описание окажется недостаточным. Здесь только одним наглядным изображением, особенно если деталь не имеет плоскостей симметрии, обойтись нельзя. Если же дать на чертеже изображения детали с нескольких ее сторон (комплексный чертеж из наглядных изображений), то чертежи окажутся трудоемкими и сложными. Такой способ составления чертежей потребует много времени на проектирование изделий.  [c.8]

Рассмотрим термодинамическую систему, представленную схематически на рис. 5.1. По трубопроводу / рабочее тело с параметрами Т, pi, t) подается со скоростью С[ в тепломеханический агрегат 2 (двигатель, паровой котел, компрессор и т.д.). Здесь каждый килограмм рабочего тела в общем случае может получать от внешнего источника теплоту q и совершать техническую работу например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок 3 со скоростью сг, имея параметры Гг, pi, vi.  [c.43]

Техническая работа, затрачиваемая в компрессоре, зависит от характера процесса сжатия. На рис. 5.9 изображены  [c.52]

Чем больше число ступеней сжатия и промежуточных охладителей, тем ближе процесс к наиболее экономичному — изотермическому, но тем сложнее и дороже конструкция компрессора. Поэтому вопрос о выборе числа ступеней, обеспечивающих требуемую величину рг, решается на основании технических и технико-экономических соображений.  [c.54]

В газовой турбине Т продукты сгорания адиабатно расширяются, в результате чего их температура снижается до Та, а давление уменьшается до атмосферного р . Весь перепад давлений р. — р используется для получения технической работы в турбине /тех. Большая часть этой работы /к расходуется на привод компрессора разность /тех — U является полезной и используется, например, на производство электроэнергии в электрическом генераторе ЭГ или на другие цели (при использовании жидкого топлива расход энергии на привод топливного насоса невелик, и в первом приближении его можно не учитывать).  [c.59]


Гг, совершая техническую работу /тех и превращаясь во влажный пар с параметрами точки 2. Этот пар поступает в конденсатор, где отдает теплоту холодному источнику (циркулирующей по трубкам охлаждающей воде), в результате чего его степень сухости уменьшается от хч до Х2. Изотермы в области влажного пара являются одновременно и изобарами, поэтому процессы 5-1 и 2-2 протекают при постоянных давлениях pi и р2. Влажный пар с параметрами точки 2 сжимается в компрессоре по линии 2 -5, превращаясь в воду с температурой кипения. На практике этот цикл не осуществляется прежде всего потому, что в реальном цикле вследствие потерь, связанных с неравновесностью протекающих в нем процессов, на привод компрессора затрачивалась бы большая часть мощности, вырабатываемой турбиной.  [c.62]

Температура газа в турбине выше, чем в компрессоре, поэтому больше и удельный объем при том же давлении, а элементарная техническая работа (И-, , — vdp. В результате и 1,с%> и (см, рис. 6,5).  [c.211]

Графический способ задания кинематических поверхностей имеет две разновидности. Сложные поверхности технических форм, имеющие образующие переменной формы, могут быть заданы некоторым числом (совокупностью) принадлежащих им точек и линий — каркасом. Такие поверхности обычно называют каркасными. Каркасные поверхности задают на чертеже проекциями элементов каркаса. Каркас поверхности в этом случае называется дискретным в отличие от непрерывного каркаса кинематической поверхности. На полученном чертеже точки (и линии) поверхности, не лежащие на линиях каркаса, могут быть построены только приближенно. Поэтому поверхность, заданная каркасом, не вполне определена, могут существовать и другие поверхности с гем же каркасом, но несколько отличающиеся одна от другой. Примерами каркасных поверхностей могут служить поверхности обшивки самолетов, автомобилей и судов, некоторые технические детали, имеющие сложную форму, например лопатки турбин и компрессоров, гребные винты, и т. п.  [c.82]

РД 09-244-98. Инструкция по проведению диагностирования технического состояния сосудов, трубопроводов и компрессоров промышленных аммиачных холодильных установок.— М. ПолиМе-диа, 1999. — 76 с.  [c.360]

Для технических задач, связанных, в частности, с расчетом центробежных и осевых компрессоров, а также турбин важно определить именно величину и расположение N. Для этого воспользуемся теоремой о количестве и. моменте количества движения системы.  [c.316]

Исследуем с помощью уравнения Бернулли техническую работу компрессора и турбины. В компрессоре полное давление газа увеличивается р > pt, а в газовой турбине падает Ра <С.Р - Отношение давлений в компрессоре соответственно  [c.34]

Итак, в идеальном случае техническая работа может быть определена по изменению полных давлений без учета конкретных значений скорости газа до и после машины. Работа, передаваемая газовой турбине, является положительной (р < Pi )f а подводимая компрессором,—отрицательной p2>Pi)-  [c.36]

Определить мощность на валу компрессора К18, техническая характеристика которого следующая число ступеней сжатия  [c.119]

Определить коэффициент подачи первой ступени компрессора, техническая характеристика которого следующая диаметр цилиндра D = 300 мм, диаметр штока поршня d = 60 мм, ход поршня S = 160 мм, число оборотов п = 600 об/мин, производительность компрессора, отнесенная к условиям всасывания (ро — = 1 ат и to = 20° С) равна Q = 8 м /мин.  [c.121]

Прикладные курсы термодинамики имеют и соответствующие наименования техническая термодинамика, изучающая теорию тепловых двигателей, холодильных машин, компрессоров химическая термодинамика, изучающая равновесие и направление химических реакций, теорию растворов и т. п. физическая, или общая, термодинамика, изучающая теорию фазовых превращений, состояние вещества и т. д.  [c.6]

Процессами во влажном воздухе, рассматриваемыми в технической термодинамике, являются процессы сушки различных материалов, сжатия воздуха в компрессоре, кондиционирования и т. п.  [c.92]


Компрессор КСЭ-5 имеет следуюш,ие технические характеристики  [c.109]

При проведении эксперимента изменяется только давление. Остальные данные, необходимые для построения реального цикла компрессора, снимаются непосредственно с индикаторной диаграммы. Частота вращения вала компрессора, а также необходимые геометрические размеры указаны в технической характеристике компрессора.  [c.113]

Техническая работа dL обусловлена отводом или подводом энергии в форме работы при прохождении потока среды через техническое устройство типа турбины (отвод энергии) или компрессора (подвод энергии).  [c.164]

Главной проблемой при техническом осуществлении цикла Карно является создание двигателя, в котором обеспечивался бы процесс /—2. Высокая конечная влажность пара при адиабатном расширении создает крайне неблагоприятные гидродинамические условия работы такого двигателя. Кроме того, компрессор, сжимающий насыщенный пар до его полного превращения в воду (процесс 3—4), имел бы большие габариты из-за больших объемов пара, работа, затрачиваемая на сжатие, была бы слишком велика, а гидродинамические условия работы компрессора были бы крайне тяжелы.  [c.205]

Пример расчета двухступенчатого компрессора см. А. М. Ли т-, вин, Техническая термодинамика, нзд. 4-е, Госэнергоиздат, 1963, стр. 284, пример 11-2.  [c.161]

На индикаторной диаграмме техническая работа компрессора изобразится площадью  [c.82]

Если обозначить массу газа, сжимаемого в компрессоре за один оборот вала, т, то с учетом того, что V = mv, а величина т в процессе сжатия остается постоянной, техническая работа компрессора при сжатии в нем 1 кг газа будет равна  [c.83]

Изложены o iioBEii технической термодинамики и теории тепло-и массообмена. Приведены основные сведения по процессам горения, конструкциям топок и котельных агрегатов. Рассмотрены принципы работы тепловых двигателей, паровых и газовых турбин, двигателей внутреннего сгорания и компрессоров. Описаны компоновки и технологическое оборудование тепловых электрических станций, а также оборудование промышленных теплоэнергетических установок. Первое издание вышло в 1982 г. Второе издание дополнено материалами для самостоятельной работы студентов.  [c.2]

В разных отраслях техники и разных странах вводят свои, несколько отличные от приведенных нормальные условия , например, технические (р = = 735,6 ммрт,ст. = 98 кПа, /=15°С) или нормальные условия для оценки производительности компрессоров (р = = 101,325 кПа, ( = 20 °С) и т. д. В данной книге, если это не оговорено особо, будут использоваться нормальные физические условия.  [c.8]

Работа расширения / совершается рабочим телом на поверхностях, ограничивающих выделенный движупгийся объем, т. е. на стенках агрегата и границах, выделяющих этот объем в потоке. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине и компрессоре, поршень в поршневой машине), и рабочее тело совершает на них техническую работу /тех-  [c.44]

В отличие от предыдущего случая здесь h < h2, т. е, техническая работа в адиабатном компрессоре затрачивается па увеличение энтальпии газа. Случаи неа-диабатного сжатия будут рассмотрены в 5.6.  [c.45]

ГОСТ 8732-70 материал по исполнительной документации — сталь 20 по ГОСТ 8732-70. Байпасная линия разрушилась на отдельные фрагменты неправильной формы с линейными размерами от 180 до 1300 мм при пуске компрессора. Ультразвуковая толщинометрия восемнадцати фрагментов байпаса показала, что толщина стенки трубы составляла 8,8-11,1 мм. Твердость металла — 206-215 НВ. Для установления очага разрушения фрагменты были обмерены, промаркированы, и в соответствии с линиями разрыва была разработана схема разрушения. На всех представленных фрагментах изучен характер изломов и определены направления распространения трещин, анализ которых позволил предположить, что очаг разрушения находился в сварном шве приварки байпасной линии к крану. Из этого шва были отобраны темплеты для исследования причин зарождения и развития разрушения. Установлено, что очагом разрушения явился участок сварного шва длиной - 50 мм, от которого началось лавинообразное развитие магистральных трещин с многочисленными разветвлениями и изменениями направлений. При изучении рельефа излома сварного шва были выявлены три зоны 1 — первоначальная трещина длиной до 45 мм и глубиной до 7 мм с очагами разрушения в дефектах сварки (подрез, несплавления) 2 — трещины, развившиеся в процессе эксплуатации байпасной линии 3 — долом с гладким срезом. Микроструктурный анализ показал, что начальная трещина развивалась в корневом шве по линии сплавления. В ходе анализа химического состава металла было установлено, что материал байпасной линии соответствовал стали 75 по ГОСТ 14959-79, на основании чего было сделано предположение, что для монтажа байпаса был использован участок трубы из обсадной или технической колонны марки Л, применяемой при обустройстве скважин. Механические свойства и хими-  [c.53]

Мейснер [147] описал водородный ожижитель, установленный в Физико-технической лаборатории в Берлине в 1928 г. При производительности компрессора 37 м /час и рабочем давлении 175 атм эта установка давала 10 лЫас.  [c.70]

Основными областями технического применения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющейся при сжигании топлива теплоты анализ циклов ядерных энергетических установок, в которых источником теплоты служит реакция деления расщеп-ляюпгихся элементов анализ принципов и методов прямого получения электрической энергии, в которых стадия превращения внутренней энергии тел или, как говорят еще, химической энергии в теплоту не имеет места, и последняя непосредственно преобразуется в полезную внешнюю работу в форме энергии электрического тока анализ процессов тепловых машин (компрессоров и холодильных машин), в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре анализ процессов совместного или комбинированного производства работы и получения теплоты (или холода) для технологических или бытовых нужд анализ процессов трансформации теплоты от одной температуры к другой.  [c.513]


Паровые компрессионные холодильные машины. В качестве рабочих веществ (холодильных агентов) в паровых холодильных машинах могут быть использованы вещества с технически допустимым давлением на-сьшщнных паров во всем диапазоне температур цикла. Хороший холодильный агент должен иметь большую величину теплоты парообразования и достаточно высокую критическую температуру. Наиболее часто используются в качестве холодильных агентов хлористый метил Hg l, углекислый газ СОз и особенно аммиак NHg, который применяется главным образом в холодильных машинах с поршневыми компрессорами для получения температур не ниже —65 С.  [c.621]

Определить производительность газомоторкомпрессора двойного действия УКП80, имеющего следующую техническую характеристику диаметр цилиндра — 300 мм, ход поршня — 160 мм, скорость вращения вала компрессора — 600 об/мин, давление на входе во всасывающий патрубок — 0,95 ат, давление нагнетания — 90 ат, коэффициент подачи — 0,69.  [c.120]

Широкое применение ГТУ и ДВС на компрессорных станциях магистральных газопроводов и на других объектах газовой и нефтяной промышленности связано с решением большого числа технических и технологических задач. К таким задачам можно отнести оптимизацию режимов газоперекачивающих агрегатов с газотурбинным приводом при изменяющихся технологических параметрах (количество транспортируемого газа, давление, температура), а также при изменении параметров внешней среды (температура наружного воздуха) оптимизацию режимов энергопривода буровых установок диагностику технического состояния ГТУ, две, центробежных нагнетателей газа и компрессоров повышение экономичности ГТУ и ДВС за счет утилизапии теплоты уходящих газов и т. д.  [c.158]

Знание технической гидромеханики необходимо для решения многочисленных инженерных задач, в том числе в области санитарной техники и, в частности, в теплога-зосиабжении и вентиляции. Расчет трубопроводов различного назначения (воздухопроводы, водопроводы, газопроводы, паропроводы и др.),конструирование гидравлических и воздуходувных машин (насосы, компрессоры, вентиляторы и пр.), проектирование котельных агрегатов, печных и сушильных установок, воздухо- и газоочистных аппаратов, теплообменных аппаратов, расчет отопительных и вентиляционных устройств требуют отчетливого понимания законов технической гидромеханики.  [c.6]

Основными областями технического приложения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок (в которых полезная внешняя работа производится за счет теплоты, выделяющейся при сжигании топлива) циклов ядерных энергетических установок (где 1 сточннком теплоты служит реакция деления расщепляющихся элементов) принципов и методов прямого получения электрической энергии (в которых стадия превращения внутренней энергии тел — химической энергии в теплоту отсутствует, и последняя преобразуется в полезную внешнюю работу в форме энергии электрического тока) процессов тепловых машин — компрессоров и холодильных машин, где за счет затраты  [c.502]

Процессами, протекающими во влажном воздухе, рассматриваемыми в технической термодинамике, являются процессы сушки материалов, охлаждения газов в хвостовых поверхностях котлоагрегатов, сжатия воздуха в компрессорах и т. д. Во всех этих процессах количество сухого воздуха и его агрегатное состояцие не изменяются, в то время как количеетво водяного пара, содержащегося в воздухе, может во время протекания процесса изменяться, пар может частично конденсироваться и, наоборот, вода испаряться. Эти обстоятельства обусловливают некоторые особенности исследования процессов, протекающих во влажном воздухе, по сравнению со смесями идеальных газов. "В частности, при исследовании процессов влажного воздуха широко применяются графические методы.  [c.213]


Смотреть страницы где упоминается термин Технический компрессор : [c.107]    [c.71]    [c.36]    [c.5]    [c.558]    [c.141]    [c.82]    [c.83]    [c.83]   
Смотреть главы в:

Введение в техническую термодинамику  -> Технический компрессор



ПОИСК



Компрессорий

Компрессоры



© 2025 Mash-xxl.info Реклама на сайте