Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные параметры гидравлических машин

Основные параметры гидравлических машин  [c.174]

При разработке гидравлической схемы в целях повышения экономичности и надежности необходимо стремиться к минимально возможному числу составляющих ее элементов. После проработки схемы на ней должны быть указаны тип и основные параметры насоса, гидродвигателя, устройств управления и вспомогательных устройств. При этом рекомендуется применять типовые машины и аппараты. В случае отсутствия таковых приходится прибегать к разработке оригинальных гидравлических устройств.  [c.227]


В современных машинах находят применение механизмы с упругими, гидравлическими, пневматическими и другими видами связей, теоретический расчет которых требует обязательной опытной проверки. Поэтому наряду с развитием теоретических методов синтеза и анализа необходимо изучение и развитие методов экспериментального исследования машин и механизмов. Экспериментальное исследование современных скоростных автоматов и комплексных систем часто дает единственную возможность получить полноценное решение задачи или определить параметры, необходимые для последующих расчетов. Анализ уравнения движения машины указывает пять основных параметров, измерение которых необходимо и достаточно для всестороннего экспериментального исследования механизмов перемещения, скорости, ускорения, силы и крутящие моменты. Величины деформаций, напряжений, неравномерности хода, к.п.д. и вибрации определяются результатами измерений пяти указанных основных механических параметров.  [c.425]

Принцип действия гидравлических машин объемного действия и их основные параметры  [c.26]

В нашей стране изготавливают типовые машины для испытаний по различным схемам нагружения чистый и консольный изгиб вращающегося образца, изгиб плоских образцов, растяжение — сжатие, кручение. Основные технические параметры типовых моделей приведены в работе [62]. Стандарт [48] определяет характеристики механических, электромеханических и гидравлических машин. Нормируются следующие параметры наибольшая суммарная нагрузка, наибольшая амплитуда нагрузки, частота циклов нагружения и некоторые другие показатели, характерные для конкретного типа машин.  [c.33]

Классифицируя кузнечные машины по кинематическим признакам рабочего хода, А. И. Зимин поначалу выделил четыре их основные вида молоты, гидравлические прессы, кривошипные и ротационные машины. В дальнейшем к ним добавились новые виды (импульсные, с вибрационным, пульсирующим приложением нагрузки, статы и др.). Эта классификация характеризовала первый этап упорядочения кузнечно-прессовых машин. В статье Весовые параметры кузнечных машин А. И. Зимин заложил основы теории конструирования оптимальных кузнечно-прессовых машин. При этом он рассмотрел проблему снижения веса машин с точки зрения влияния на вес принципиальной, энергетической и конструктивных схем и предложил коэффициент веса машин, позволяющий их количественно оценивать и сравнивать.  [c.56]


Основными параметрами объемных гидравлических машин являются расход рабочей жидкости Q, перепад давлений Ар = = Pi — Pi между входной и выходной полостями машины, мощность N, крутящий момент М., число оборотов вала п.  [c.65]

Основными параметрами объемной гидравлической системы являются расход рабочей жидкости Q, перепад давлений Лр = = Pi — Р2 между входной и выходной полостями, мощность N, крутящий момент М, число оборотов вала п. Эти параметры, выраженные в безразмерном виде, определяют характеристики машины.  [c.107]

Как уже отмечалось в подразд. 20.3, принцип действия аналогичных элементов пневматических и гидравлических систем одинаков. Это в полной мере можно отнести к пневматическим и гидравлическим машинам. Поэтому уравнения, описывающие работу гидромашин, формулы для определения их основных параметров, характеристики, классификация, подробно изложенные в гл. 12 и 16, справедливы и для пневматических машин.  [c.301]

Какие машины называют одноковшовыми экскаваторами Из каких операций состоит их рабочий цикл Охарактеризуйте эти операции. Что такое большой цикл Приведите классификацию одноковшовых экскаваторов. Какие сменные виды рабочего оборудования могут быть установлены на одноковшовых экскаваторах Чем отличаются специальные экскаваторы от универсальных Приведите сравнительную оценку гидравлических и канатных экскаваторов. Назовите главный и основные параметры одноковшовых экскаваторов. Каков принцип построения размерных групп универсальных одноковшовых экскаваторов и их индексов Приведите примеры.  [c.281]

Для чего предназначены неполноповоротные гидравлические экскаваторы Как они устроены, каковы их основные параметры и как они работают Перечислите виды сменных рабочих органов этих машин.  [c.281]

Безрельсовые загрузочные машины (манипуляторы) (рис. 9.2) выполняются в виде четырехколесной неподрессоренной тележки на резиновом ходу, к раме которой прикреплен на шарнире поднимающийся в вертикальной плоскости хобот с клещевым захватом. Зажим и освобождение заготовки производятся обычно гидравлическими цилиндрами, работающими на масле. Давление масла создается шестеренчатым насосом, приводимым во вращение электродвигателем. ГОСТ 17808—72 предусматривает выпуск безрельсовых загрузочных машин грузоподъемностью 0,63 1,25 2,5 и 5,0 т. Основные параметры и размеры их приведены в табл. 9.4 (по ГОСТ 17808—72).  [c.231]

В условных обозначениях ручных машин буквами обозначен вид привода ИЭ — электрический, ИП — пневматический, ИГ — гидравлический, ИМ -- моторизованный с двигателем внутреннего сгорания. На каждой ручной машине должны быть указаны за-вод-изготовитель или его товарный знак, полный индекс машины, основной параметр машины, год и месяц выпуска, № ГОСТа. Для пневматических машин дополнительно указывают номинальную мощность (Вт) и частоту вращения, для электрических машин — род электрического тока, напряжение (В), силу тока (А), мощность (Вт), режим работы машины, частоту тока (Гц) для машиИ на частоту 200 и 400 Гц.  [c.265]

В учебнике рассмотрены основные типы транспортирующих машин непрерывного действия конвейеры, эскалаторы, элеваторы, пневматические и гидравлические транспортирующие устройства, а также вспомогательные устройства транспортирующих систем и основные типы погрузочных машин. Изложена общая теория транспортирующих машин непрерывного действия. Вводные сведения по транспортирующим машинам содержат их классификацию, основы технико-экономиче-ских расчетов, вопросы выбора машин, основные направления их современного развития, характеристику транспортируемых грузов. Описание транспортирующих машин включает общее устройство, принципы действия, современные конструкции машин и их элементов, области применения, теорию, основные параметры, способы расчета (с примерными расчетами) и эксплуатационные характеристики. Главное внимание уделено конвейерам рассмотрены ленточные, пластинчатые, скребковые, скребково-ковшовые, ковшовые, люлечные, подвесные, грузоведущие, качающиеся, винтовые и роликовые конвейеры. Более подробно рассмотрены новые разновидности конвейеров, получающие в настоящее время широкое развитие, — подвесные толкающие с автоматическим адресованием, специальные скребковые, вибрационные, шагающие и напольные тележечные.  [c.2]


В Министерстве транспортного строительства с 1967 г. действует Ведомственный типаж Лебедки и гидравлические домкраты общего назначения, рекомендуемые для транспортного строительства. Основные параметры и области применения . Уточненный Ведомственный типаж, разработанный лабораторией грузоподъемных и транспортных устройств отделения строительных машин ВНИИ транспортного строительства, издан в 1982 г.  [c.15]

Основными параметрами, характеризующими гидравлическую машину, являются следующие  [c.174]

Задача синтеза системы привод—ведомый механизм, одна из основных задач теории механизмов и машин, должна ставиться и решаться по-новому на основе использования современных вычислительных алгоритмов и вычислительной техники. Это относится в первую очередь к весьма распространенным системам, в которых применяется гидравлический или пневматический привод линейного или вращательного движения. Что касается выбора оптимальной структуры системы, то на первых стадиях следует опираться на знания и опыт проектировщика, быстро возрастающие в условиях широкого использования диалога человек—ЭВМ, сопоставления различных структур с оптимизированными (а не произвольно выбранными) параметрами, накопления информации о предельных возможностях того или иного варианта.  [c.14]

Износ систем и агрегатов Во многих сложных машинах можно выделить отдельные системы и агрегаты, работоспособность которых в основном зависит от их износа и в меньшей степени от влияния других узлов и механизмов машины. Износ таких систем и агрегатов и его влияние на выходные параметры целесообразно изучать самостоятельно, но учитывать воздействия на данную систему других агрегатов машины, которые для нее играют роль окружающей среды. Взаимодействие и влияние износа отдельных пар трения рассматривается в пределах данной системы или агрегата. Примером таких узлов могут служить гидравлические системы и агрегаты машин [82, 107]. Износ элементов гидросистемы— насосов, распределительных пар, уплотнений, силовых цилиндров, поршней—непосредственно сказывается на выходных параметрах системы — точности передачи движения или управляющего воздействия, КПД, передаваемых нагрузках и др. Износ других элементов машины скажется в основном на силовых и тепловых нагрузках в гидросистеме, но не повлияет на изменение ее внутреннего состояния. Целесообразно также самостоятельно изучать износ пневматических систем, систем управления, систем подачи топлива, смазки, охлаждения, тормозных систем [39 ], и др. Сказанное можно отнести и ко многим агрегатам машины — двигателю и его системам, приводным коробкам передач,  [c.368]

Однако практически во всех случаях приемлемые значения кавитационных параметров необходимо знать предварительно. Эта информация должна входить в исходные данные для расчета, В то же время кавитационные процессы, происходящие в сложных гидравлических системах, какими являются насосы и турбины, не поддаются теоретической обработке. В связи с этим до настоящего времени определение параметров, характеризующих степень развития кавитации, производится в основном экспериментально в лабораторных условиях с последующим пересчетом или непосредственно на натурной машине.  [c.54]

Передачи — см. Гидравлические приводы Гидродинамические приводы Механические приводы. Электрические приводы Перепускные клапаны 79 Планировочные машины — Приборы унифицированные 451—464 Плиты вибрационные 255 — Возбудители колебаний 261—266 — Классификация 255 — 257 — Параметры основные — Выбор и расчет 257 — 258 — Типаж машин 257 — Тяговый расчет 258 — 259 Плотность грунтов в насыпях — Глубина уплотнения 231 232 — Коэффициент уплотнения земляного полотна — Определение — Формулы 231, 232 Плунжерные снегоочистители — Классификация и назначение 407 — Производительность 415, 416 — Расчет 407 —416 — Расчет геометрических параметров 410— 415 — Тяговый и энергетический расчеты 409, 410 Погрузчики одноковшовые — Назначение и классификация 172, 173, 178  [c.497]

Вторым условием подобия является подобие профилей скоростей жидкости, а также распределение давления на жидких границах элементов. Эти профили скорости существенно влияют на формирование течения, если жидкая граница составляет заметную долю всей границы элемента или расположена в области максимальных скоростей. Обычно граничные профили скорости определяются в основном потоком вне элемента. Граничное же распределение давления определяет абсолютный уровень давления жидкости к элементе, независимо от относительной площади жидкой границы. Отношение скоростей на границе к характерной скорости должна быть одно и то же для натурных и модельных экспериментов. Для большинства элементов при определении гидравлических характеристик достаточно знать не полный граничный профиль скорости, а отношение проекций средних по расходу или площади скоростей на границе к характерным скоростям, приближенно предполагая подобие полей скоростей. Неопределенность условий на близких границах элемента в значительной степени обесценила результаты ряда экспериментов и не дала возможность использовать их в условиях, отличных от исследованных. Так, например, эмпирическая формула из работы [40], учитывающая увеличение коэффициента сопротивления при протечке, но не учитывающая закрутки потока на границе, может приводить к ошибке вплоть до знака. Как следует из описания экспериментальной установки, эта формула справедлива лишь при отсутствии закрутки потока на периферии полости. Эмпирические формулы для распределения давления полости [15] пригодны лишь для узкого класса лопастных машин. По этой же причине отличаются экспериментальные параметры по  [c.92]


Основными параметрами ручных машин являются потребляемая мощность, для электрических машин - напряжение, род, сила и частота тока для пневматических машин - рабочее давление сжатого воздуха. Единой системы индексации ручных машин не существует. Индексы определяют разработчики машин и их изготовители. Наиболее широко используют индексы, состоящие из буквенной и цифровой частей. Первой буквой И обозначают все ручные машины ( механизированный инструмент ), вторая буква обозначает вид привода Э - электрический, Г - гидравлический, П - пневматический, Д - от двигателя внутреннего сгорания. Первая цифра цифровой части индекса обозначает группу машин 1 - сверлильные, 2 - шлифовальные, 3 - резьбозавертывающие, 4 - ударные, 5 - фрезерные, 6 - специальные и универсальные, 7 - многошпиндель-ные, 8 - насадки и головки инструментальные, 9 - вспомогательное оборудование, 10 -резервная группа. Вторая цифра обозначает исполнение машины О - прямая, 1 - угловая, 2 - многоскоростная, 3 - реверсивная. Последними двумя цифрами обозначают номер модели. Буквы после цифр обозначают очередную модернизацию. Например, индекс ИЭ-1202А расшифровывается как ручная электросверлильная многоскоростная машина второй модели, прошедшая первую модернизацию.  [c.340]

При расчете и проектировании гидрофицироианных машин основные парамет )ы гидропривода, геометрические и присоединительные размеры гидрооборудования следует выбирать в соответствии со стандартом. В табл. 10—18 представлены стандартизированные значения параметров гидравлических систем.  [c.36]

Существенные затруднения возникают при анализе зависимости динамических свойств систем с упругими преобразователями от основных параметров машины — максимальной нагрузки на образец и максимального перемещения активного захвата. Эти затруднения вызваны неопределенностью величины моментов инерции присоединенных к преобразователю масс возбудителя и рычажной системы, поскольку в зависимости от способа силовозбуждения (механический, гидравлический, электродинамический, электромагнитный и др.), мощности, частоты нагружения и схемы соединения с преобразователем моменты инерции присоединенных масс могут изменяться в широких пределах. Поэтому ограничимся рассмотрением динамической системы, выполненной по схеме, приведенной на рис. 89, а, машины с кривошипным возбудителем, рассчитанной на осевую нагрузку +5000 дан. Моменты инерции и жесткости элементов системы следующие ii—0,7 дан-см-сек , 4=3,1 дан см сек , Со= = 105 дан1см, Сг = 2,5 -10 dfrnj M, С3 = С4 = С5 = 2 -10 danj M. Жесткость преобразователя, определяется по зависимости (VI. 22). При подстановке в выражение (VI. 21) конкретных значений жесткостей выясняется, что крутильная жесткость преобразователя l значительно меньше эквивалентной суммарной жесткости элементов нагружаемой системы и в первом приближении может не учитываться. В этом случае выражение (VI. 21) приобретает вид  [c.154]

Злектрогидравлические толкатели (ЭГТ) выпускаются для усилий до 2000 кгс (рис. 93) и в большинстве строительных машин с электро- и гидроприводом могут оказаться эффективнее пневматических и гидравлических сервомоторов. Для ЭГТ, работающих на переменном токе, в зависимости от передаваемого усилия Р (кгс) примерные значения основных параметров бу-  [c.175]

Как уже сказано, уровень параметров машины в значительной степени зависит от типа привода. В современной практике проектирования машин промышленного назначения широко применяются три типа привода электрический, пневматический и гидравлический. В ряде случаев, особенно на сложных машинах, применяется комбинированный электропневмогидропривод. Такое сочетание позволяет использовать положительные стороны каждого типа приводов. Каждый из них имеет свои достоинства и недостатки. Например, гидравлический привод, который считается наиболее технически совершенным и удобным в эксплуатации, требует значительных затрат труда на точную обработку основных деталей (цилиндров, блоков и т. п.) его составляющих. С другой стороны, сравнительно дешевый и простой в изготовлении механический привод менее надежен и точен в эксплуатации. Поэтому в каждом конкретном случае нужно искать оптимальное решение.  [c.80]

Механика малоциклового деформирования и разрушения по мере развития ее базисных направлений становится научной основой расчетов прочности и ресурса машин и конструкций на стадиях проектирования и эксплуатации. Это в первую очередь относится к несуш,им элементам конструкций и деталям машин, испытывающим действие повторных экстремальных тепловых и механических нагрузок. Такие нагрузки возникают при повышении рабочих параметров машин и конструкций — единичной мощности, скоростей, давлений, температур, а также при повышении маневренности, форсировании режимов работы, возникновении аварийных ситуаций при переходе к полупиковым и пиковым режимам эксплуатации. При этом число циклов нагружения на основных расчетных и экстремальных режимах в зависимости от типов и назначения машин и конструкций (атомные реакторы, тепловые энергетические установки, паровые и гидравлические турбины, химические аппараты, технологические и транспортные установки, летательные аппараты и другие объекты новой техники) изменяется от 1 до 10 и более. Температурные режимы (изотермические и неизотермические) таковы, что абсолютные значения максимальных температур несущих элементов достигают 600—1200° С и более, а перепады температур при программном и аварийном изменении режимов достигают 400—500° С со скоростями от 1 до 10 град/ч. Время одного цикла термомехапического нагружения составляет от 10 до 10 с при общем временном ресурсе от 10 до 10 ч.  [c.5]

Проведенные в последуюш,ие годы В. И. Поликовским (1935—1937) и М. И. Невельсоном (1937,1946) теоретические и, в основном, экспериментальные исследования позволили установить более строгие зависимости между различными аэродинамическими параметрами потока в проточной части вентилятора и уточнить значения отдельных коэффициентов в расчетных формулах. Был создан метод расчета центробежных вентиляторов, который давал надежные результаты для широкого класса распространенных в то время центробежных машин. Он получил в литературе название метода ЦАГИ и был опубликован М. И. Невельсоном в 1954 г. В результате проведенных исследований было установлено, что в межлопаточных каналах рабочих колес с загнутыми вперед лопатками, вогнутость которых обраш ена в сторону враш ения колеса, возникают сильна развитые отрывные вторичные течения, которые приводят к большим гидравлическим потерям в рабочем колесе. У колес с лопатками, загнутыми назад, течение в межлопаточных каналах на режимах, близких к режиму максимального значения кпд т)тах, почти безотрывное, что приводит к уменьшению потерь давления в колесе и увеличению кпд центробежной ступени Ь целом. Поэтому в конце сороковых начале пятидесятых годов-вентиляторы с такими лопатками, у которых величина "Птах достигала 80%, начинают широко использоваться взамен вентиляторов с лопатками, загнутыми вперед, имевших распространение в тридцатых годах, у которых величина Птах пе превышала 70%.  [c.850]


Смотреть страницы где упоминается термин Основные параметры гидравлических машин : [c.151]    [c.312]    [c.106]    [c.316]    [c.301]   
Смотреть главы в:

Гидравлика и гидропровод Издание 3  -> Основные параметры гидравлических машин



ПОИСК



123 — Основные параметры параметры

Гидравлическая машина

Машины с гидравлическим приводом 502 Основные параметры

Основные параметры машин

Параметр основной

Параметры машины

Принцип действия гидравлических машин объемного действия и их основные параметры



© 2025 Mash-xxl.info Реклама на сайте