Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения малых свободных колебаний линейной системы

Подставляя найденные значения производных в уравнение Лагранжа (21.2) и проведя простые выкладки, приходим к системе двух линейных дифференциальных уравнений второго порядка с постоянными коэффициентами, описывающей малые свободные колебания механической системы с двумя степенями свободы  [c.222]

В настоящей работе рассматриваются свободные и вынужденные колебания упругой гироскопической системы с распределенными и сосредоточенными массами. Члены, соответствующие силам внешнего и внутреннего трения, считаются малыми они отнесены к правым частям и входят под знак малого параметра а. Таким образом, формально линейные дифференциальные уравнения в частных производных, описывающие колебания исследуемой системы, и краевые условия приобретают вид квазилинейных. Рассматриваемая краевая задача решается методом малого параметра, обобщенным на системы с распределенными и сосредоточенными параметрами [1]..  [c.6]


Упруго-гистерезисные и усталостно-прочностные свойства резин можно определять на одних и тех же универсальных приборах. Практически выгоднее проводить раздельно кратковременные испытания по нахождению упруго-гистерезисных свойств и длительные испытания на усталостную выносливость. Основные методы испытаний подробно рассмотрены в работе [30]. При использовании этих методов для нахождения динамических характеристик резин следует иметь в виду, что последние характеризуют свойства резин при вынужденных колебаниях в стационарном режиме, когда инерционные эффекты и влияние скорости распространения и затухания волн в резиновых образцах пренебрежимо малы. Однако при измерениях параметров вынужденных колебаний в условиях резонанса, при ударных испытаниях и измерениях частоты и затухания свободных колебаний инерционными силами пренебрегать нельзя. Для описания механического поведения образцов в этих случаях пользуются дифференциальным уравнением движения системы с массой т с линейными с и вязкими Ь характеристиками  [c.41]

Обладая такой информацией, можно более подробно изучить поведение жидкой массы за критической фигурой Якоби. Если свободная поверхность получает смещение включающее гармонические функции третьего порядка), и если допустить, что любое общее (внешнее, Б. К.) физическое возмущение содержит подобные же члены, то амплитуды вне зависимости от трения начнут возрастать экспоненциально со временем. Эта система больше не сможет совершать колебания около равновесной формы, т. к. устойчивости нет, и вместо колебаний будет происходить динамическое движение до тех пор, пока система не достигнет нового устойчивого состояния. Уравнения движения системы в первом приближении позволяют проследить её развитие только до тех пор, пока скорости и смещения остаются малыми. Большего линейные уравнения дать не могут. По так или иначе, в конечном счёте система должна достигнуть какого-то другого устойчивого состояния, в котором не происходит дальнейшего рассеивания энергии. П тут возникает интересный вопрос какой будет конечная конфигурация. К сожалению, с помощью доступных точных методов детально этот вопрос исследовать невозможно. По вполне может быть, как раньше и предполагалось, что конечным результатом будет деление первоначальной  [c.19]

УРАВНЕНИЯ МАЛЫХ СВОБОДНЫХ КОЛЕБАНИЙ ЛИНЕЙНОЙ СИСТЕМЫ. Колебания системы называются свободными, если скорость изменения состояния системы определяется только состоянием самой системы, а именно восстанавливающей равновесное состояние силой, зависящей от величины q, которая определяет отклонение системы из этого состояния, и сопротивлением, про-порциональньпм скорости q. Такую систему мы называем дальше линейным осциллятором.  [c.71]


Ограничимся рассмотрением таких свободных колебаний, которые описываются линейными дифференциальными уравнениями. Для того гтобы уравнения движения были линейными, необходимо, чтобы отклонения системы от положения равновесия были достаточно малы (что обеспечивается малостью начальных возмущений). Кроме того, система должна быть такова, чтобы уравнения движения допускали линеаризацию в окрестности положения равновесия. Последнее условие накладывает ограничения на структуру системы, тип связей и свойства действующих сил.  [c.55]

Пример 4. КОЛЕБАНИЯ НИТИ С БУСИНКАМИ. Как отмечают в своей книге Ф. Р. Гантмахер и М. Г. Крейн [14, с. 142—143], этой задаче принадлежит совершенно особая роль в истории механики и математики. Пожалуй, она была первой задачей на исследование малых колебаний системы с п степенями свободы. В связи с ней Ж. Даламбер предложил свой метод интегрирования системы линейных дифференциальных уравнений с постоянными коэффициентами. Отправляясь от нее, Даниил Бернулли высказал свое знаменитое предположение, что решение задачи о свободном колебании струны можно представить в виде тригонометрического ряда, что вызвало между Л. Эйлером, Ж. Даламбером, Д. Бернулли и др. дискуссию о природе тригонометрических рядов, затянувшуюся на несколько десятилетий. Впоследствии Ж. Л 1гранж показал более строго, как можно предельным переходом из решения задачи о колебаниях нити с бусинками получить решение задачи о колебании струны. Наконец, этой задачей (и аналогичной задачей из теории теплопроводности) руководствовался III. Штурм в своих замечательных исследованиях по высшей алгебре и теории дифференциальных уравнений .  [c.126]

Уравнение (6.6) является линейным дифференциальным уравнением второго порядка с постоянными коэффициентами. Если коэффициент fell равен нулю или сравнительно мал, то это уравнение описывает колебания системы, называемые линейными. Стационарность сил и связей, рассматриваемых в данной задаче, приводит не только к постоянству коэффициентов уравнения (6.6), но и к его однородности поэтому описываемые этим уравнением колебания называют собственными (или свободными).  [c.255]

Н. Буряков [27] изучал динамическую контактную задачу об установившихся изгибных колебаниях кольцевого штампа с плоским основанием, расположенного на упругом изотропном полупространстве. На штамп действует в вертикальной диаметральной плоскости возмущающий момент Ме ° . Высота штампа предполагается малой по сравнению с наружным его радиусом. В этом случае под действием возмущающего момента штамп будет совершать лишь изгибные колебания. Предполагается также, что силы трения между штампом и полупространством отсутствуют и что поверхность полупространства вне штампа свободна от усилий. Удовлетворяя граничным условиям задачи, получены тройные интегральные уравнения, которые затем приводятся к одному интегральному уравнению второго рода. Для решения этого интегрального уравнения применен приближенный способ, основанный на замене интегрального уравнения конечной системой линейных алгебраических уравнений. Система этих уравнений решалась на ЭЦВМ. Найдена зависимость для нормальных напряжений на площадке контакта, а также получены рыражения для определения амплитуды изгибных колебаний штампа и угла сдвига фаз между перемещением штампа и возмущающим моментом.  [c.332]


Смотреть страницы где упоминается термин Уравнения малых свободных колебаний линейной системы : [c.426]    [c.392]    [c.413]   
Смотреть главы в:

Теория колебаний  -> Уравнения малых свободных колебаний линейной системы



ПОИСК



Колебания Уравнения колебаний

Колебания линейные

Колебания линейных систем

Колебания малые

Колебания малые свободные

Колебания свободные

Линейные уравнения

Линейные уравнения — Системы

Малые колебания системы

Система линейная

Система линейных уравнени

Система малых ЭВМ

Система свободная

Уравнение малых колебаний системы

Уравнение свободных колебаний

Уравнения колебаний линейных

Уравнения малых колебаний

Уравнения малых свободных колебаний



© 2025 Mash-xxl.info Реклама на сайте