Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические и оптические свойства

Использование зонной теории. Согласно зонной теории, для объяснения электрических и оптических свойств кристаллов важное значение имеют как последняя заполненная (валентная зона), так и первая незаполненная (зона проводимости) зоны. При внедрении в кристалл чужеродных ионов возникают уровни, в запрещенной зоне расположенные несколько выше вершины валентной зоны решетки и ниже дна зоны проводимости. Эти уровни локализуются около конкретного иона и поэтому называются локальными.  [c.362]


Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям (рис. 98).  [c.88]

Электрические и оптические свойства среды  [c.3]

В любом атоме существует ряд энергетических уровней. Нижние из них заполнены электронами, более высокие не заполнены, но могут принимать электроны с нижних уровней при возбуждении атома. Каждому из уровней электронов в решетке кристалла соответствует энергетическая зона. Одни зоны кристалла образуются путем уширения уровней катионов, другие — уровней анионов. При этом каждая из образующихся зон служит обобществленным уровнем всех катионов или всех анионов кристалла. Наиболее важной парой зон, определяющей основные электрические и оптические свойства кристалла, является самая высокая из заполненных зон, обычно образованная уровнями аниона основного вещества валентная зона), и самая низкая из незаполненных зон, состоящая из уровней его катиона зона проводимости). Зазор между этими зонами соответствует тем значениям энергии, которые электрон не может получить в решетке кристалла. Поэтому расстояние между валентной зоной и зоной проводимости называется запрещенной зоной (рис. 70).  [c.183]

Приведенные данные показывают, что электрические и оптические свойства аморфных полупроводников похожи на свойства кристаллических полупроводников, но не тождественны им. Это сходство, как показал специальный анализ, обусловлено тем, что энергетический спектр электронов и плотность состояний для ковалентных веществ, которым относятся полупроводники, определяются в значительной мере ближним порядком в расположении атомов, поскольку ковалентные связи короткодействующие. Поэтому кривые N (е) для кристаллических и аморфных веществ во многом схожи, хотя и не идентичны. Для обоих типов веществ обнаружены энергетические зоны валентная, запрещенная и проводимости. Близкими оказались и общие формы распределения состояний в валентных зонах и зонах проводимости. В то же время структура состояний в запрещенной зоне в некристаллических полупроводниках оказалась отличной от кристаллических. Вместо четко очерченной запрещенной зоны идеальных кристаллических полупроводников запрещенная зона аморфных полупроводников содержит обусловленные топологическим беспорядком локализованные состояния, формирующие хвосты плотности состояний выше и ниже обычных зон. Широко использующиеся модели кривых показаны на рис. 12.7 [68]. На рисунке 12.7, а показана кривая по модели (Мотта и Дэвиса, согласно которой хвосты локализованных состояний распространяются в запрещенную зону на несколько десятых эВ. Поэтому в этой модели кроме краев зон проводимости (бс) и валентной (ev) вводятся границы областей локализованных состояний (соответственно гл и ев). Помимо этого авторы модели предположили, что вблизи середины запрещенной зоны за счет дефектов в случайной сетке связей (вакансии, незанятые связи и т. п.) возникает дополнительная зона энергетических уровней. Расщепление этой зоны на донорную и акцепторную части (см. рис. 12.7, б) приводит к закреплению уровня Ферми (здесь донорная часть обусловлена лишними незанятыми связями, акцепторная — недостающими по аналогии с кристаллическими полупроводниками). Наконец, в последнее время было показано, что за счет некоторых дефектов могут существовать и отщепленные от зон локализованные состояния (см. рис. 12.7, в). Приведенный вид кривой Л (е) позволяет объяснить многие физические свойства. Так, например, в низкотемпературном пределе проводимость должна отсутствовать. При очень низких температурах проводимость может осуществляться туннелированием (с термической активацией) между состояниями на уровне Ферми, и проводимость будет описываться формулой (12.4). При более высоких температурах носители заряда будут возбуждаться в локализованные состояния в хвостах. При этом перенос заряда  [c.285]


Все эти процессы приводят к созданию дефектов решетки, т. е. к изменению микроструктуры кристалла. При достаточно мощном облучении за счет этих дефектов заметно изменяются и различные макроскопические свойства тела — механические и тепловые. Изменение решетки влияет и на структуру электронных энергетических зон, т. е. на электрические и оптические свойства.  [c.650]

Появление дефектов в кристаллической решетке неизбежно искажает структуру электронных уровней, что приводит к изменению оптических и электрических свойств кристалла, и изменения существенны для диэлектриков и полупроводников, но не для металлов, внутри которых имеется большое число свободных электронов, которые, с одной стороны, практически не подвержены действию точечных дефектов решетки, а, с другой стороны, определяют электрические и оптические свойства кристалла.  [c.655]

Влияние радиационных нарушений на электрические свойства полупроводников обычно сводится к введению энергетических уровней в запрещенную энергетическую зону [44, 48]. Эти энергетические уровни связаны с дефектами в кристаллической решетке, которые могут захватывать электроны или дырки. Положительно заряженные места в решетке, образовавшиеся в результате захвата дырок, называются донорами. Акцепторами принято называть места в решетке, ставшие отрицательно заряженными в результате захвата электронов. Такие места в решетке оказывают большое влияние на концентрацию свободных дырок и электронов и, следовательно, на электрические и оптические свойства кристалла.  [c.282]

Поскольку на поверхности происходит скачкообразное изменение плотности материала, кристаллической структуры или локальной ориентации, поверхности оказывают сильное влияние на многие механические, электрические и оптические свойства твердого тела.  [c.12]

Атомы углерода в состоянии. р -гибридизации образуют слоистые структуры. Слой (базисная плоскость) состоит из непрерывного ряда правильных шестиугольников, в вершинах которых находятся атомы углерода. Ближайшее расстояние между атомами в плоскости, равное стороне шестиугольника, составляет 1,417 А. Графит состоит из непрерывного ряда слоев, параллельных базисной плоскости. Атомы углерода в слое связаны тремя равноценными ст-связями. Дополнительные связи образуются л -электронами, орбитали которых несколько перекрываются. Коллективизация л-электро-нов в графитовом слое придает его электрическим и оптическим свойствам металлический характер. Величина энергии связи между атомами углерода в плоскости составляет по различным данным от 340 до 420 кДж-г/атом, а величина энергии связи между слоями не превышает 42—84 кДж г/атом.  [c.8]

Одним из наименее изученных является вопрос о структурных особенностях гидрированных пленок и о влиянии структуры на фундаментальные электрические и оптические характеристики получаемых композиций. В детальном исследовании этих проблем лежит ключ к получению приборных композиций с воспроизводимыми и оптимизированными структурой и электрофизическими свойствами. Если для пленок a-Si H к настоящему времени достигнут значительный прогресс в этом направлении, то пленки других гидрированных полупроводников еще существенно им уступают как по своим структурным характеристикам, так и по возможностям воспроизводимого управления их электрическими и оптическими свойствами.  [c.106]

Анализ имеющихся экспериментальных данных указывает на резкую селективность распределения веществ с полезными для техники свойствами по различным пространственным группам. Особые электрические и оптические свойства выявлены у веществ, принадлежащих к 100 ацентрическим пространственным группам, но 80% всех обнаруженных особенных свойств сосредоточены в 40 пространственных группах, а 73% — в 9 избранных пространственных группах.  [c.38]

Электронная проводимость в окрестности ФП диэлектрик — металл. Переходы этого типа имеют принципиальное значение для физики твердого тела, поскольку связаны с коренной перестройкой электронного спектра кристалла [26]. Изучение природы ФП нз металлического в диэлектрическое состояние представляет не только научный, но и технический интерес, так как резкие изменения электрических и оптических свойств кристаллов в окрестности таких переходов находят применения в устройствах электроники и автоматики [30].  [c.114]


В настоящее время имеется достаточно оснований полагать, что дефекты структуры играют существенную роль в различных процессах и в значительной степени определяют механические, электрические и оптические свойства кристаллов.  [c.37]

В гл. VI рассматриваются вопросы электропереноса в жидких металлах, дается анализ электрических и оптических свойств.  [c.8]

Халькогенидные стекла представляют собой бескислородные стеклообразные сплавы сульфидов, селенидов и теллу-ридов (т. е. халькогенидов), мышьяка, сурьмы, фосфора, висмута и таллия. Эти стекла могут быть получены путем самого различного сочетания указанных компонентов, т. е. это весьма обширная группа стекол, обладающих разнообразными физико-химическими, физическими, электрическими и оптическими свойствами. По своей природе эти стекла представляют собой систему непрерывного ряда твердых растворов, замещения, они имеют цепочечное строение, ближний порядок в расположении атомов и часто характеризуются наличием у них одновременно нескольких различных структур.  [c.206]

Явление анизотропии кристаллов есть результат периодического решетчатого строения. В конечном счете с этим связано и то, что кристаллы могут иметь такие электрические и оптические свойства, которые аморфным телам (по крайней мере в естественном состоянии) совсем не присущи. Другими словами, в некоторых естественных кристаллах сама природа обеспечивает возможность пироэлектрических, пьезоэлектрических, электрооптических и других явлений, тогда как в аморфных диэлектриках эти явления вообще не могут возникнуть или возникают лишь в результате внешних искусственных воздействий. К этому надо добавить, что указанные физические свойства, специфические для естественного состояния, выражены в кристаллах более четко и их можно использовать с большей надежностью, чем свойства, приданные аморфным веществам искусственно. Именно поэтому на практике в подавляющем числе случаев употребляют естественные кристаллы, обладающие пиро-или пьезоэффектом, электрооптическими и другими нужными свойствами.  [c.8]

Различные физические явления оказываются часто очень тесно связанными. Выше мы уже видели, как электрическая поляризация связана с тепловыми и механическими воздействиями (пироэффект и пьезоэффект). Электрическая поляризация обуславливает многие оптические свойства кристаллов, а ее изменения (под действием внешнего или спонтанного поля) приводят к изменению их оптических характеристик. Явления, обусловленные связью электрических и оптических свойств, носят название электрооптических. В некоторых кристаллах эта связь выражена довольно сильно, что позволяет использовать их электрооптические свойства на практике. Такое применение стало особенно широким последнее время в связи с развитием квантовой электроники электрооптические кристаллы применяются для управления пучками мош,ных когерентных источников света (квантовых генераторов) — лазеров.  [c.186]

Сложность расчета здесь состоит главным образом в том, что форма частиц, влияющая на свойства рассеянного света, трудно поддается учету ввиду ее разнообразия. Играют также большую роль электрические и оптические свойства электропроводность, оптическая плотность, прозрачность и т. д.  [c.715]

Букс М. Ф. Электрические и оптические свойства молекул и конден-  [c.119]

Эти процессы определяют и физическое состояние вещества (химический состав, электрические и оптические свойства), приводят к свечению и многим важным оптическим эффектам. Изучение всех этих явлений составляет предмет нового направления в науке, в котором тесно  [c.208]

Пленки, полученные химическим путем, значительно уступают анодным пленкам по своим механическим, защитным, адгезионным и, к-особенности, электрическим и оптическим свойствам.  [c.56]

Поглощение воды (водопоглощение) твердым эмульсионным ПВХ изменяет его электрические и оптические свойства. Твердый эмульсионный ПВХ не может служить изолятором. В связи с присутствием  [c.24]

При превышении допустимой дозы радиации пластические материалы теряют механические и электрические свойства (прозрачные - мутнеют), керамические материалы и стекло теряют свои механические, электрические и оптические свойства, резиновые материалы - эластичность, полупроводники - коэффициент усиления.  [c.143]

В последние годы произошло смеш,ение фокуса интересов в физике конденсированных сред и значительно расширились ее рамки, охватив новые классы материалов и явлений. Значительная часть работ, выполняемых ныне в бесчисленных физических и химических лабораториях всего мира, посвящена фундаментальным исследованиям в таких областях, как молекулярная структура жидкостей, аморфные полупроводники, растворы полимеров, магнитные фазовые переходы, электрические и оптические свойства жидких металлов, стеклообразное состояние вещества, металл-аммиачные растворы, неупорядоченные сплавы, пары металлов, и множество иных интересных систем.  [c.9]

По всей видимости, наиболее прямой путь изучения вопросов введения примесей заключается в измерении параметров растворимости по результатам легирования, полученным при равновесных или почти равновесных условиях. После этого можно попытаться сделать выводы о механизме введения примеси при температуре выращивания. Так как измерение электрических и оптических свойств обычно проводится при комнатной или более низкой температуре, а введение примесей происходит при температуре выращивания, полная характеристика процесса практически невозможна. Таким образом, должны приниматься в расчет эффекты, связанные с отжигом, такие, как реакции между различными дефектами и образование преципитатов при выращивании и охлаждении. Кроме того, если методика выращивания такова, что введение примесей происходит в условиях, далеких от равновесия, то равновесные свойства могут лишь ориентировочно указывать на реальные свойства. Влияние примесей на электрические и оптические свойства было рассмотрено в 3, 5 гл. 2, 5, 7 гл. 3 и 3 гл. 4.  [c.110]


Пленки, полученные химическим путем, значительно уступают анодным пленкам по своим механическим, защитным, адгезионным и в особенности электрическим и оптическим свойствам. Главные преимущества химического метода оксидирования заключаются в возможности одновременной обработки большого количества деталей без контактирования их при этом методе отпадает необходимость в установлении специального электрооборудования и в потреблении электроэнергии для осуществления технологического процесса.  [c.233]

Число электронов в атоме, их распределение по слоям и группам определяет химические, оптические, электрические и магнитные свойства атомов.  [c.7]

Исходя из общих соображений, можно также до известной степени сделать понятным, почему разность — По в явлении Керра пропорциональна квадрату напряженности электрического поля. Действительно, изменение знака поля соответствует изменению на 180° положения кристалла, которому уподобляется вещество в электрическом поле, т. е. переворачиванию кристалла. Но такое переворачивание не меняет оптических свойств кристалла. Следовательно, и оптические свойства вещества не должны зависеть от направления электрического поля, т. е. разность — По должна быть пропорциональна четной степени напряженности поля, и именно второй, ибо члены высшего порядка играют меньшую роль. Теория также приводит к отношению Пе — п)1(По — п) = —2, установленному на опыте.  [c.534]

Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]

Поскольку как МОВ, так и МЦД являются структурно-чувствительными эффектами, они могут быть использованы в неразрушающих методах исследования структуры и однородности оптических, электрических и магнитных свойств материалов.  [c.194]

Периода-шость. химических, оптических, электрических и магнитных свойств атомов разл шых элементов в зависимости от 2 связана со сходным строением внешних электронных оболочек, определяющих эти свойства. Эта периодичность сохраняется и для ионов. Теряя один электрон, атом по ряд> свойств становится подобным атомам предыд>тцей гр тты.  [c.25]

Электрические и оптические свойства вещества определяются поведением электронов молекул в статическом электрическо.м поле, создаваемом между заряженными пластинками конденсатора, и в переменном иоле световой волны.  [c.3]

Несмотря на то что кремний ярляется наиболее распространенным и одним из самых дешевых элементов (97/о-ный ) и, кроме того, отличается малой плотностью, стойкостью против коррозии и жаростойкостью, он не нашел достаточно широкого применения. Основная причина ограниченного применения кремния заключается в том, что он совершенно неппастичен при температуре от комнатной по крайней мере до 600°. По-впдимому, в ближайшем будущем наибольший спрос на очень чистый кремний будет наблюдаться в тех областях применения, где можно использовать его электрические и оптические свойства, а также для силицирования металлических изделий с целью создания коррозионно- и жаростойких материалов. В результате дальнейших исследований с целью получения кремния более высокой степени чистоты наряду со снижением цен на чистый элемент, несомненно, будут найдены новые области его применения.  [c.338]

К настоящему времени синтезирован еще ряд тетраэдрически координированных гидрированных аморфных полупроводников, также обладающих очень интересными электрическими и оптическими свойствами a-Si, q H a-Si,. Ge Н, a-Sii Sn Н, a-Si, 4 Н, а-С Н. К числу принципиальных преимуществ использования этих материалов в электронной технике относятся их малая стоимость и сравнительная простота получения однородных по толщине тонкопленочных структур (в том числе многослойных, квантоворазмерных) при низких температурах осаждения на самых разнообразных и дешевых подложках очень большой площади (> 1 м ), а также их специфические полупроводниковые свойства, которые можно изменять в широких пределах, варьируя состав пленки.  [c.101]

Проводимость пленок j, -Si H изменяется в широких пределах в зависимости от условий их получения и, соответственно, от относительного содержания и размеров присутствующих в них микрокристаллитов, а также от уровня легирования пленок. Проводимость нелегированных пленок i -Si H с параметром близким к единице, при комнатной температуре, составляет 10 ...10 Oм м . Путем легирования фосфором или бором проводимость может быть увеличена до 1 Ом см . Величина дрейфовой подвижности электронов и дырок в нелегированном i -Si H изменяется в пределах 0,5...3 м B , в зависимости от величины Xq. Температурная зависимость проводимости пленок в области температур, превышающих 250...270 К, носит активационный характер. Энергия активации зависит от уровня легирования и изменяется в пределах 0,1...0,6эВ. При температурах ниже 250 К проводимость с понижением температуры изменяется существенно слабее. Колоннообразная структура пленок является причиной анизотропии их электрических и фотоэлектрических параметров. Оптические свойства пленок j, -Si H, и прежде всего спектральная зависимость коэффициента поглощения, также являются весьма чувствительной функцией Х( и изменяются в пределах, характерных для а-Si И (при Xq . ) и кристаллического кремния Х 1). В отличие от пленок a-Si H, в пленках j, -Si H не наблюдаются светоиндуцированные изменения электрических и фотоэлектрических параметров. Благодаря своим специфическим электрическим и оптическим свойствам микрокристаллический кремний является хорошим дополнением к a-Si H при создании многослойных пленочных структур различного приборного применения. В значительной степени этому способствует и совместимость технологий получения этих материалов.  [c.105]

Современный технический прогресс тесно связан с созданием и широким применением новых неорганических материалов со специфическими магнитными, электрическими и оптическими свойствами. Среди этих материалов видное место занимают ферриты — соединения окиси железа с окислами других металлов, обладающие цеииым сочетанием ферромагнитных, полупроводниковых и диэлектрических свойств. Это позволяет применить ферриты там, где использование обычных металлических ферромагнетиков практически невозможно. Речь идет прежде всего о технике высоких и сверхвысоких частот. С увеличением частоты электромагнитных колебаний значительно возрастают потери энергии из-за возникновения вихревых токов. Мощность этих потерь прямо пропорциональна квадрату частоты и размерам тела, но обратно пропорциональна удельному сопротивлению ферромагнетика. Очевидно, что в высокочастотных полях потери энергии могут быть снижены увеличением сопротивления, а оно у ферритов достигает величины порядка 10 —10 ом см.  [c.3]

Электрические и оптические свойства молекул. Распределение электронной плотности М. и способность к ое изменению под действием электрич. поля, характеризующие электрич. свойства М., выражаются важными молекулярными постоянными — диполъны.м моментом молекулы и ее поляризуемостью. Постоянным дипольным моментом обладают М. с несимметричным распредолением электронной плотности, т. е. лишенные центра симметрии и не относящиеся к точечным группам и Простейшие М. такого рода НС1, H N и т. д. Такие М. ориентируются в электрич. поле. Все М. приобретают в электрич. поле индуцированный дипольный момент, т. е. обладают поляризуемостью, выражающей способность электронной оболочки М. смещаться под действием внешнего поля. Значения дипольного момента и поляризуемости М. могут быть найдены экспериментально с помощью измерений диэлектрической проницаемости. Порядок величины дипольных моментов М. 10 з ед. СГСЕ, поляризуемости 10 см . Для всех М., за исключением тетраэдрических (напр., I4) и октаэдрических  [c.282]


ГОНИ И др. [65, 66] исследовали возможность компенсации напряжений путем добавления в широкозонные слои малых количеств фосфора. Фосфор исключительно удобен для такой компенсации напряжений, потому что он является изоэлектрон-ной с As примесью и ковалентный радиус Р гораздо меньше, чем ковалентный радиус As, Очень малое количество Р в узлах Аз не оказывает значительного влияния на электрические и оптические свойства.  [c.44]

Наряду с прочностными и пластическими свойствами большой интерес вызывают исследования других инженерных свойств в нанокристаллических материалах, таких как коррозионная стойкость, износ, демпфирующая способность, а также проявление перспективных электрических, магнитных, оптических свойств и т. д. Обнаружение этих уникальных свойств открывает перспективы практического применения наноструктурных материалов. Такие исследования только недавно начаты, но в литературе уже имеются сведения о работах, представляющих, например, непосредственный интерес для создания новых мощных постоянных магнитов на основе наноструктурных ферромагнетиков [380]. С другой стороны, хорошо известно [335, 348], что сверхпластическая формовка является высокоэффективным способом получения изделий сложной формы. В этой связи сверхпластичность ультрамел-козернистых ИПД материалов, наблюдавшаяся при относительно низких температурах или высоких скоростях деформации, весьма перспективна с точки зрения повышения производительности формовки и увеличения стойкости штамповых оснасток.  [c.222]

Книга посвящена рассмотрению физической природы механических, тепловых, электрических и магнитных свойств твердых тел и пленок, природы адгезионной связи и механической стабильности пленочных структур, природы контактных и поверхностных явлений, термоэлектгш-ческнх, тльваномагиитиых, оптических и фотоэлектрических эффектов и механизма переноса тока сквозь тонкие пленки.  [c.352]

При учете конкретных условий эксплуатации оптических приборов следует при выборе марок оптического стекла учитывать их устойчивость к влажной атмосфере и слабокпелым водным растворам, к ионизирующему излучению, температурный коэффициент линейного расширения, теплопроводность, удельную теплоемкость, плотность, модуль упругости и модуль сдвига, электрические и магнитные свойства.  [c.507]

Многие металлы при изменении температ>фы и давления претерпевают полиморфные превращения. При плавлении металлы сохраняют свои электрические, тепловые и оптические свойства Вблизи температуры плавления в жидких металлах наблюдается примерно такой же ближний порядок, как и в кристаллических металлах, который с повышением температуры нару шается вплоть до полного разупорядочения.  [c.43]


Смотреть страницы где упоминается термин Электрические и оптические свойства : [c.160]    [c.101]    [c.287]    [c.323]    [c.139]   
Смотреть главы в:

Высокотемпературное ядерное топливо  -> Электрические и оптические свойства



ПОИСК



Оптические и электрические свойства аморфных полупроводников

Электрические и оптические свойства среды

Электрические свойства



© 2025 Mash-xxl.info Реклама на сайте