Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые методы интегрирования гамильтоновых систем

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]


Гамильтонов формализм сам по себе не обеспечивает безусловного интегрирования динамических систем. У спех этого метода связан прежде всего с использованием аппарата канонических преобразований Якоби, нахождением подходящей системы обобщенных координат и производящей функции, позволяющих определять интегралы движения. В этой ситуации, прежде чем дать решение исследуемой задачи, приведем некоторые сжатые сведения из теории интегрирования гамильтоновых систем [12, 109].  [c.201]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Дифференциальные уравнения возмущенного движения (2.4), получаемые методом вариации постоянных, вполне точны. Когда вспомогательная задача (для функции Гамильтона И ) отличается от исходной малыми слагаемыми, то новые переменные в этих дифференциальных уравнениях — они были постоянными во вспомогательной задаче — представляют медленно изменяющиеся функции времени, вследствие чего оказываются применимыми приемы приближенного интегрирования. В противоположность этому, излагаемый далее способ рассмотрения возмущенного движения основывается на составлении приближенных дифференци альных уравнений относительно предполагаемо м лых отклонений (вариаций) возмущенного движения от заданного невозмущенного движения. При учете лишь первых степеней этих отклонений задача сводится к рассмотрению системы линейных дифференциальных уравнений, называемой системой в вариациях. Интегрирование ее облегчается возможностью непосредственного написания некоторых частных решений в числе, равном числу произвольных постоянных в решении задачи о невозмущенном движении, отклонения от которого рассматриваются ).  [c.605]


После того как динамическая система описана каноническими уравнениями Гамильтона, возникает проблема решения этих уравнений. В задаче двух тел канонические уравнения Гамильтона могут быть решены аналитически. В большинстве других задач, встречающихся в небесной механике и астродинамике, решить уравнения аналитически не удается. Однако, используя методы общей теории возмущений, можно строить решения в виде рядов. Найденные таким образом решения будут справедливы на некотором отрезке времени. При построении полного решения методом последовательных приближений можно, проводя соответствующие преобразования, на каждом этапе получать дифференциальные уравнения, являющиеся по форме по-прежнему каноническими и имеющие в качестве переменных так называемые постоянные интегрирования, полученные в предыдущем приближении. Описанная процедура может повторяться столько раз, сколько потребуется.  [c.216]

Главная цель, которую ставил перед собой Гамильтон, состояла в развитии метода интегрирования уравнений динамики эта цель была достигнута указанием системы формул, определяющих характеристики движения с помощью одной главной функции. Помимо этого, мемуар Гамильтона содержит еще один важный результат, на котором, однако, он, Гамильтон, долго не задерживается. Вариационная формула (7) дает приращение действия V за время t при переходе от функций ж ( ), у (t), z (t), t (О,. У jMi (0 определяющих истинное движение, к некоторой системе функцийДюдвдняющейся  [c.16]

Задача интегрирования системы уравнений (1), как известно, может быть сведена к отысканию полного интеграла некоторого уравнения в частных производных, впервые найденного Гамильтоном. В основе этого метода лежит знаменитая теорема, установленная К. Якоби [I] и М. В. Остроградским [2]. Цель настоящей работы — рассмотрение одного видоизменения данного метода, вытекающего из свойства взаимности или, лучше сказать, свойства переместимости канонических переменных в уравнении Гамильтона — Якоби. Это видоизменение метода, иной раз, ведет к более простой задаче интегрирования системы уравнений (1) и поэтому заслуживает особого рассмотрения.  [c.60]


Смотреть страницы где упоминается термин Некоторые методы интегрирования гамильтоновых систем : [c.90]   
Смотреть главы в:

Динамические системы-3  -> Некоторые методы интегрирования гамильтоновых систем



ПОИСК



Гамильтон

Гамильтонова система

Зэк гамильтоново

Интегрирование

Интегрирование гамильтоновых систем

Метод Гамильтона

Метод систем

Методы интегрирования

Системы Гамильтона



© 2025 Mash-xxl.info Реклама на сайте