Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Численное решение жестких систем

Численное решение жестких систем  [c.78]

В заключение отметим, что здесь мы лишь обратили внимание на существование класса жестких систем, при численном решении которых возникают трудности, и дали весьма не строгий качественный анализ причин этих трудностей. Более подробно с методами решения жестких систем можно ознакомиться в книгах [22, 29].  [c.41]

Вторая особенность численного решения систем обыкновенных дифференциальных уравнений связана с достаточно широким распространением в практических задачах особого класса систем, называемых жесткими.  [c.39]


Устойчивость несущего винта с учетом аэроупругости может быть оценена путем численного решения нелинейных уравнений движения для определения переходного процесса. Недостаток такого подхода заключается в том, что для определения Переходного процесса требуется существенно больший объем вычислений, чем для получения периодического решения (которое, кстати говоря, должно быть определено как исходное состояние для переходного процесса), и в том, что по переходному процессу не так просто получить количественную информацию о полной динамике системы. Альтернативным подходом является расчет устойчивости с учетом аэроупругости при помощи методов теории линейных систем (см. разд. 8.6). Линейные дифференциальные уравнения описывают возмущенное движение несущего винта и вертолета относительно балансировочного положения. Затем устойчивость оценивается непосредственно по собственным значениям. При этом подходе основная трудность заключается в получении уравнений движения, описывающих систему, что является условием применения эффективного аппарата теории линейных систем. В случае рассмотрения всего вертолета при расчете устойчивости с учетом аэроупругости одновременно определяются динамические характеристики вертолета как жесткого тела, что также важно для характеристик устойчивости и управляемости.  [c.692]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]


Численное решение задач оптимального управления предполагает неоднократное интегрирование прямой и сопряженной систем. В сингулярно возмущенных задачах эти динамические системы являются жесткими (см. п. 5Л.), и, как следствие, при вычислениях возникают серьезные трудности, выражающиеся в недопустимо большом времени счета и неизбежном накоплении вычислительных ошибок. В связи с этим возрастает роль асимптотических методов, тем более, что при их применении, как будет показано, происходит декомпозиция исходной задачи на задачи меньшей размерности.  [c.83]

В случае быстрого вертикального погружения упругих цилиндрических, конических и сферических оболочек в жидкость, гидродинамические нагрузки достигают своего максимального значения при небольших глубинах погружения. Поэтому можно воспользоваться теми же вагнеровскими соображениями, что и для жестких тел (Э. И. Григолюк и А. Г. Горшков [32]). При таком подходе после определения гидродинамического давления р = 0 1 соответствует давлению на жесткой оболочке, а Р2 учитывает давление, обусловленное деформацией оболочки) используется комбинированный метод. Он основан на преобразовании с помощью процедуры Бубнова или метода прямых систем уравнений в частных производных, описывающих поведение оболочек, к системе обыкновенных дифференциальных уравнений и последующем их решении методом Рунге-Кутты (или каким-либо другим численным методом).  [c.401]

Поставим вопрос о построении асимптотических приближений для решения этой задачи. Результаты предыдущего параграфа в данном случае не применимы если задачу (5.1), (5.2) записать в виде (4.1), то при ц = О правая часть динамической системы будет иметь разрыв. Системы вида (5.1) называют сингулярно возмущенными. Вектор z принято называть вектором быстрых переменных (быстрой переменной), т. к. производные его компонент велики по модулю при малом ц. В противовес у называют вектором медленных переменных (медленной переменной). Заметим, что наличие в системе переменных с существенно различными скоростями изменения значительно усложняет ее численное интегрирование (в теории численных методов такие системы называют жесткими) [87]. В связи с этим, вопрос о построении асимптотических приближений для решений сингулярно возмущенных систем является весьма актуальным.  [c.17]

Численные методы решения задачи Коши. Наиболее широко применяют одношаговые методы типа Рунге—Кутта, а также многошаговые явные и неявные разностные схемы. Последние особое распространение получили при решении так называемых жестких или сиигулярно-возмущенных систем дифференциальных уравнений, характеризуемых наличием малого параметра при старшей производной. Очевидно, на практике следует использовать такие численные схемы, которые обеспечивали бы требуемую точность решения задачи, гарантировали бы численную устойчивость счета при достаточно крупных шагах интегрирования, позволяли бы легко реализовать автоматический выбор шага дискретизации.  [c.120]

Только в том случае, когда производная дН/др / ( i) зависит лишь от первое уравнение решается в квадратурах. Аналогичное утверждение имеет место и для последующих уравнений. В общем случае необходимо решать всю систему дифференциальных уравнений совместно. Однако, если в дополнение к гамильтониану имеются другие интегралы движения, тогда число совместно решаемых уравнений может быть уменьшено на единицу для каждого дополнительного изолирующего интеграла движения. Изолирующим является такой интеграл, который в некоторых канонических переменных приводится к уравнению dH/dpi = / (qi). Преобразование к переменным действие — угол удовлетворяет даже более жесткому условию dHidpi == onst. Однако само преобразование зависит от существования изолирующего интеграла. Последний же может быть достаточно глубоко скрыт в динамике системы, так что обнаружить его не так-то легко. Изолирующие интегралы связаны с симметриями динамической системы, и симметрии могут оказаться очевидными, и тогда необходимое преобразование переменных, обеспечивающее решение в квадратурах, определяется непосредственно. Это справедливо, например, для частицы в поле центральных сил (см. ниже). Когда присутствие симметрии в системе не очевидно, как, например, в случае рассматриваемой ниже цепочки Тоды, найти изолирующий интеграл не просто. В настоящее время не существует какого-либо метода, позволяющего определить все изолирующие интегралы произвольной гамильтоновой системы или хотя бы установить их полное число. Поэтому не существует и никакого общего способа проверки на интегрируемость (N изолирующих интегралов) для системы с N степенями свободы. Если в системе нет очевидной симметрии, то догадаться о существовании скрытого изолирующего интеграла и обнаружить его часто удается лишь при помощи численных экспериментов.  [c.47]



Смотреть страницы где упоминается термин Численное решение жестких систем : [c.203]    [c.214]    [c.283]    [c.185]    [c.151]    [c.196]    [c.13]    [c.26]    [c.205]   
Смотреть главы в:

Разностные методы решения задач механики сплошных сред  -> Численное решение жестких систем



ПОИСК



Вал жесткий

Решение системы

Система жёсткая

Численные решения



© 2025 Mash-xxl.info Реклама на сайте