Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевый Применение

Отливки из бронз алюминиевых — Применение 233 —Стенки —Толщина 235  [c.296]

К легким сплавам, которые с каждым годом находят все большее применение, относятся алюминиевые. Применение их позволяет значительно облегчить вес машин и конструкций.  [c.375]

Болтовыми, шпилечными, винтовыми и другими резьбовыми соединениями можно объединять в сборочные единицы детали, изготовленные из различных материалов, в том числе и из пластических масс. При назначении материала для деталей с подвижными резьбовыми соединениями (ходовые винты и др.) учитывают коэффициент трения. Две свинчиваемые детали из алюминиевых сплавов обычно не изготовляют, так как без применения специальных смазочных паст резьбовое соединение заклинивается, получается неразъемным.  [c.278]


В табл. 28 указано применение некоторых марок алюминиевых сплавов.  [c.188]

Примеры применения марок алюминиевых сплавов  [c.188]

До 1906 г. алюминий применяли в чистом виде, но в этом году А. Вильм почти случайно нашел способ упрочнения сплава А1—Си в результате закалки и старения, а предложенный им сплав Си, 0,5% Mg, 0,5% Мп) является и сейчас самым распространенным алюминиевым сплавом (дюралюминий). Сейчас широкое применение как конструкционный материал имеет не чистый алюминий, а сплавы алюминия, в первую очередь дюралюминий ввиду его высокой прочности (сгв = 30- 60 кгс/мм ) и малой плотности (2,6—  [c.565]

Для изготовления отливок из алюминиевых сплавов применяют кокили с вертикальным разъемом. Получение плотных отливок обеспечивается направленным затвердеванием установкой массивных прибылей, применением малотеплопроводных красок для окраски прибылей. Для снижения усадочных напряжений в отливках кокили перед заливкой подогревают до температуры 250—350 °С, а при очень сложной конфигурации отливок — до 400—500 °С. Воздух и газы выводятся из полости кокиля с помощью щелей <3 и рисок 2, размещаемых в плоскостях разъема, и пробок /, устанавливаемых в стенках кокиля вблизи глубоких полостей (рис. 4.48, а). Расплавленный металл в полость кокиля подводят через расширяющиеся литниковые системы с нижним (рис. 4.48, б) или вертикально-щелевым (рис. 4.48, в) подводом металла к тонким сечениям отливки. Все элементы литниковой системы размещают в плоскости разъема кокиля.  [c.168]

Жаропрочность ряда металлов можно повысить, упрочнив металлическую основу введением в нее мелкодисперсных частиц тугоплавких соединений, главным образом различных окислов (материалы типа САП, т. е. спеченного алюминиевого порошка). Жаростойкость этих материалов, являющихся перспективными для применения в различных областях техники, и механизм их окисления исследованы автором, Б. К. Опарой, Т. Г. Кравченко и О. А. Пашковой на кафедре коррозии металлов МИСиС.  [c.109]

Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрочных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбин, топливные и масляные трубопроводы и др. В самолетостроении наблюдается тенденция перехода от клепаной алюминиевой  [c.68]

Для свинца и алюминия опасными являются и катодные зоны, так как возможно возникновение так называемой катодной-коррозии из-за повышения щелочности среды около катодных участков. Можно полагать, что в этом случае имеет место взаимодействие свинца и алюминия с образующейся щелочью. Это явление имеет большое значение при применении электрохимических методов для защиты кабелей со свинцовой и алюминиевой броней.  [c.188]


В ряде отраслей новой техники широкое применение находят конструкционные сплавы на основе Т1 с удельной прочностью,превосходящей сталь, алюминиевые и магниевые сплавы.  [c.191]

Деформируемые алюминиевые сплавы в зависимости от состава, методов обработки и применения подразделяются на сплавы, не упрочняемые термической обработкой (с концентрацией легирующего компонента не более предела насыщения при обычной температуре), и  [c.327]

Сварка — это процесс создания неразъемного соединения деталей путем местного нагрева их до расплавленного состояния с применением или без применения механического усилия. Сваркой соединяются все марки сталей, чугуна, меди, латуни, бронзы, алюминиевых сплавов и термопластические пластмассы (винипласт, капрон, полиэтилен, полистирол, плексиглас и др.). Соединение деталей сваркой занимает одно из ведущих мест в современной технологии. Сварка более экономична, чем клепка.  [c.121]

Сварка цветных металлов (медные и алюминиевые сплавы) затруднительна из-за высокой теплопроводности, легкой окисляемости (образование тугоплавких окисных пленок) и требует применения флюсов.  [c.159]

Заклепки общемашиностроительного применения выпу скаются по техническим условиям ГОСТ 10304—80 (СТ СЭВ 1329—78) классов точности В (нормальной) и С (грубой) из углеродистых легированных, коррозионно-стойких сталей, латуни, меди, алюминиевых сплавов и предназначены для работы в диапазоне температур от +300 до —60 С.  [c.408]

Растворенный водород также оказывается нежелательным, так как он резко уменьшает пластичность металлов (стали, медные и алюминиевые сплавы), вызывает пористость в сварных швах и в зоне термического влияния. Так называемая водородная хрупкость металлов- в настоящее время стала важной технической и научной проблемой, так как применение упрочненных сталей, обладающих малым запасом пластичности б, вызывает замедленное разрушение сварных конструкций.  [c.347]

Рассматриваются также вопросы, связанные с конструированием солнечных батарей, предназначаемых для применения в качестве источников энергоснабжения на Луне. На лунной батарее (рис. 8-8) регулирование теплового режима осуществляется с помощью гладкой алюминиевой фольги с нанесенным па нее покрытием Z-93.  [c.192]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Для сборки мелких моделей в блоки широкое применение получили металлические стояки, выполняемые полыми из металлических труб (алюминиевых сплавов). На стойки наращивают слой модельного состава толщиной 2-5 мм последовательным многократным погружением их в расплав модельного состава (4-5 раз) с охлаждением после каждого погружения в течение 8 -10 мин.  [c.198]

Электрические печи сопротивления (тигельные и отражательные) находят широкое применение для плавки алюминиевых, магниевых и цинковых сплавов. Тигельные печи применяют в цехах с небольшим выпуском, а также в тех случаях, когда производят отливки из большого числа сплавов, разнообразных по химическому составу (рис. 117). Однако эти печи имеют низкую производительность и невысокий тепловой коэффициент полезного действия. Температура нагрева в печи находится в пределах 900 - 1100°С.  [c.242]


Если для шара получены достаточно точные данные, позволяющие оценить Сш и Ов в любой области чисел Рейнольдса, то для частиц неправильной формы подобные закономерности в связи с различием формы и свойств неправильных частиц в каждом отдельном случае устанавливаются чисто эмпирическим путем и имеют ограниченное применение. Сопоставление результатов, полученных автором ч-[Л. 71, 82], с литерату]рными данными позволило прийти к некоторым обобщениям, которые рассматриваются 3 ниже. Опыты были проведены с алюминиевыми цилиндриками (dt =  [c.51]

Дюралюминий — наиболее рас1прост1раненный представитель группы алюминиевых сплавов, применяемых в деформированном виде н упрочняемый термической обработкой. Он содержит около 4% Си н 0,5% Mg, а также марганец 11 железо. Дюралюминий — сплав, по крайней мере, шести компонентов алюминия, меди, магния, марганца, кремния и железа, хотя основными добавками являются медь и магний. Поэтому указанный сплав мо >кно причислить к сплавам системы А1 — Си — Mg. Кремш1Й п железо являются постоянными примесями, попадающими и сплав вследствие применения недостаточно чистого алюминия.  [c.583]

Бурное развитие всех отраслей народного хозяйства вызывает необходимость все большего применения специальных сталей, алюминиевых сплавов и других цветных и активных металлов. Разделка этих металлов является одной из наиболее трудоемких и наименее производительных операций. Также затруднена и сварка некоторых из них. Поэтому возникла необходимость разработки и применения такого способа резки указанных металлов, при котором наряду с высоким качеством реза обеспечивалась бы высокая производительность. Исследования и практика показали, что это может быть достигнуто при арименении газоэлектрической (плазменной) обработки металлов.  [c.133]

Повышения корроэионно-ка-витационной стойкости деталей машин достигают а) правильной конструкцией деталей (для уменьшения кавитационных эффектов) б) повышением прочности (твердости) й коррозионной устойчивости сплава (применение алюминиевых бронз, хромистой, хромоникелевой и хромомарганцевой стали и др.)  [c.341]

С целью замены олова другими, менее дифицнтными добавками, в последние годы находят большое применение безоло-вянистые бронзы — алюминиевые, кремнистые, марганцовистые, бериллиевые, свинцовистые и др. Коррозионная стойкость большинства безоловянистых бронз не ниже, а некоторых нз них, как, например, кремнистых, выше оловянистых. По своим физикомеханическим свойствам безоловянистые бронзы не уступают оловянистым.  [c.249]

Сплавы алюминия. Сп.тавы алюминия с медью, цинко.м, марганцем, кремнием и др. обладают лучшими технологическими свойствами и более высоко прочностью, чем чистый алюмишй , и поэтому находят широкое применение в технике. В коррозионном отношении все алюминиевые сплавы обладают значительно мспыие стойкостью, чем чистый алюмипи .  [c.271]

Выбор металла открывает большие возможности снижеиня массы изделия. Наибольшая экономия металла может быть получена при использовании прочных и высокопрочных сталей, а также сплавов с высокой удельной прочностью (алюминиевых, титановых). Снижению массы изделия способствует применение более прочных холоднокатаных элементов вместо горячекатаных, а также использование термообработки. Однако повышение прочности металла нередко сопровождается ухудшением его свариваемости или снп-жение.м сопротивления разруше.иио. Поэтому экономия металла за счет повышения его прочности целесообразна только при учете всех этих факторов. Большие перспективы имеет применение композиционных материалов, например двухслойных сталей.  [c.6]

В настоящее время применяют следующие пигменты белые (белила 2п и РЬ), желтые (охра, крон РЬ и 2п), синие (лазурь, ультрамарин), зеленые (окиеь Сг), коричневые (мумия, сурик Ре), черные (сажа). Наибольшее применение из порошкообразных металлических пигментов имеет алюминиевая и бронзовая пудра.  [c.398]

Алюминиевые сплавы коррознестойкн и не вызывают окисления масла. Недостатком их является пониженная прирабатывае.мость и склонность к наволакиванию па вал. Необходима смазка под давлением и применение валов повышенной твердости (> ИКС 55).  [c.381]

ГОСТ 24834—81 (СТ СЭВ 305—76) устанавливает диаметры (в диапазоне 5—45 мм) и шаги метрической цилиндрической резьбы для соединений с переходными посадками при одновременном применении дополнительного элемента заклинивания. Стандарт распространяется на стальные детали с наружной резьбой типа шпилек, ввинчиваемые в детали из стали, чугуна, алюминиевых и магниевых сплавов. Форма впадины наружной резьбы должна быть закругленной (рис. 21.2). Для резьбы с шагом Р с 1 мм допускается пло-скорезанная вершина.  [c.296]

ГОСТ 4608—81 (СТ СЭВ 306—76) устанавливает диаметры и шаги метрической цилиндрической резьбы для соединений с натягом без применения элементов заклинипания (номинальный диаметр резьбы в диапазоне от 5 до 45 мм). Такая резьба нарезается по наружной поверхности стальных деталей, ввинчиваемых в детали из стали, высокопрочных и титановых сплавов, чугуна, алюминиевых и магниевых сплавов.  [c.298]

В тензометре Бояршинова (рис. 570) вместо механических шарниров применен упругий шарнир, состояптий из двух плоских пружин /, 2. Алюминиевые детали 3, 4 поворачиваются при растяжении образца относительно точки пересечения пружин. Упругий шарнир обладает тем преимуществом, что не имеет зоны застоя, которая характерна для обычных механических шарниров вследствие наличия сухого трения. Тензометр имеет два стальных каленых  [c.510]

Такая реакция реализуется в технике при сжигании смесей алюминиевого порошка и железной окалины, получивших название термитов . Сравнительная простота осуществления алю-мотермической реакции и недефицитность применяемых материалов положили начало широкому применению термитов в промышленности, особенно для целей металлургии и сварки.  [c.130]

Рис. 8-8. Солнечная батарея мощностью 2,5 кВт, предназначенная для применения в качестве первичного источника электроэнергии на Луне, с гибкими (самоуправляющимися) панелями. а — общий вид монтируемой на Луне батареи б солнечная батарея в сложенном виде I — алюминиевый каркас сотовой конструкции с терморегулн-рующим покрытием 2 — полиамидная Н-пленка —многослойный алюмини-зированный майлар, скатываемый с батареи. Рис. 8-8. <a href="/info/35591">Солнечная батарея</a> мощностью 2,5 кВт, предназначенная для применения в качестве первичного <a href="/info/610052">источника электроэнергии</a> на Луне, с гибкими (самоуправляющимися) панелями. а — общий вид монтируемой на Луне батареи б <a href="/info/35591">солнечная батарея</a> в сложенном виде I — алюминиевый каркас сотовой конструкции с терморегулн-рующим покрытием 2 — полиамидная Н-пленка —многослойный алюмини-зированный майлар, скатываемый с батареи.

Кроме того, в последние годы успешно прошла испытания в пресс-формах литья под давлением алюминиевых сплавов коррозионностойкая сталь 2Х9В6, разработанная Московским станкоинструментальным институтом. Опробование этой стали на московском заводе "Изолит показало ее значительные преимущества по стойкости перед сталью ЗХ2В8Ф. Испытание этой стали на разгаро-стойкость путем термоциклирования образцов подтвердило перспективность ее применения. В настоящее время в США и Германии сталь марок Н-13 и 2344 получают улучшенного качества. Эта сталь имеет повышенную вязкость, а также более высокое сопротивление термическому удару за счет повышенной чистоты слитка, идеальной проковки, которая дает плотную однородную структуру.  [c.58]

Замечательные механические свойства мартенситно-стареющей 18%-ной никелевой стали ВКС отечественной разработки позволяют применять ее при изготовлении пресс-форм для литья деталей сложных конфигураций, когда к пресс-форме предъявляются повышенные требования по разгаростойкости. Одной из областей применения этих сталей является использование их для высоконагру-женных стержней пресс-форм литья под давлением алюминиевых сплавов [3].  [c.58]

Алюминиевый заэвтектический сплав АК21М2,5Н2,5 имеет ряд преимуществ, которые определяют область его применения повышенную жидкотекучесть, обеспечивающую получение тонкостенных и сложных по конфигурации отливок небольшую литейную усадку пониженную склонность к образованию горячих трещин жаропрочность, твердость и износостойкость.  [c.72]


Смотреть страницы где упоминается термин Алюминиевый Применение : [c.122]    [c.343]    [c.208]    [c.577]    [c.578]    [c.633]    [c.408]    [c.255]    [c.453]    [c.400]    [c.32]    [c.187]    [c.57]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.220 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте