Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Палладий Коррозионная стойкость

Исследования показали, что при одном и том же количестве внедренных ионов палладия коррозионная стойкость титана заметно меняется в зависимости от характера распределения палладия в титане. Так, потенциал коррозии за первый час испытаний тем положительнее, чем больше палладия находится в непосредственной близости от поверхности. Результаты подтверждают, что потенциал коррозии определяется содержа-  [c.78]

Палладий, коррозионная стойкость в различных средах 360—363, 369  [c.1237]


В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]

Сплавы, содержащие более 10% Os, трудно обрабатываются. Коррозионная стойкость сплавов выше, чем чистого палладия.  [c.420]

Для прецизионных измерительных и автоматически управляемых приборов применяются потенциометры с обмоткой из сплавов благородных металлов. К этим материалам предъявляются высокие требования коррозионная стойкость, стабильность электрического сопротивления, малый температурный коэффициент электросопротивления, малая термоэлектродвижущая сила в паре с Си, высокое сопротивление износу, малое контактное сопротивление. Сплавы применяются в виде тонких проволок. Сопротивления работают на малых токах и при малых контактных давлениях. От сплавов требуется также хорошая пластичность и достаточная прочность. Широко применимы для этой цели сплавы Pt с 1г, содержащие от нескольких до 25% 1г. Применяются также сплавы Pd с 30— 40%Ag, имеющие малый температурный коэффициент электросопротивления.. Исследовательские работы по разработке сплавов платины, палладия и золота с неблагородными металлами стимулировались бурным развитием автоматики  [c.435]

Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения.  [c.89]


Палладий по коррозионной стойкости в морских условиях приближается к платине. В качестве материала для анодов палладий также обладает высокой стойкостью, хотя и несколько уступает платине.  [c.163]

Палладий — рутений. Рутений значительно повышает твердость палладия. Сплавы, содержащие более 15 % Ри, трудно обрабатываются. Коррозионная стойкость сплавов палладий — рутений выше, чем коррозионная стойкость чистого палладия. Известен контактный сплав с 9,5 % Ни.  [c.300]

Серебро устойчиво в воде лишь до температуры 130° С. Сплавы серебра, например сплав с концентрацией 40—60% серебра, 30% кадмия, 10—30% палладия или 30% серебра, 50% кадмия, 20% золота (вместо золота можно брать 10% цинка) имеют высокую коррозионную стойкость в воде при температуре до 260° С. Сплав серебра с кадмием (88% серебра и 12% кадмия) не стоек в воде, насыщенной кислородом, при температуре 260° С. Сплав же с концентрацией 80% серебра и 20% кадмия устойчив при той же температуре в воде, насыщенной кислородом. Сплавы серебра с кадмием с концентрацией 20, 25 и 30% серебра совершенно не устойчивы в воде, насыщенной кислородом, при температуре 316° С и более стойки при этих условиях в деаэрированной воде [111,252]. При контакте с аустенитной нержавеющей сталью стойкость сплава с концентрацией 75% серебра, 25% кадмия, 0,002% никеля и 0,0001% золота при температуре 260° С ухудшается. В контакте  [c.231]

Палладий, вводимый в качестве компонента для высокотемпературных припоев, значительно повышает их коррозионную стойкость, пластичность, а также способность растекаться и смачивать паяемую поверхность. Припои с палладием применяют для пайки самых разнообразных металлов, никелевых сплавов, золота, молибдена циркония, титана, вольфрама, бериллия, коррозионно-стойких сталей, жаропрочных сплавов.  [c.73]

Титан, легированный палладием или платиной, как конструкционный материал для химической промышленности обладает редким и ценным сочетанием свойств — коррозионной стойкостью в окислительных и неокислительных кислых средах. В таблице 7.13 приведена сравнительная характеристика коррозионной стойкости титана и сплава титана с 0,2 % Pd.  [c.221]

Коррозионная стойкость сплава, как правило, устанавливается не сразу, а после некоторого взаимодействия с коррозионной средой, во время которого происходит обогащение поверхностного слоя сплава палладием или платиной.  [c.221]

Серебро и палладий имеют меньший порядковый номер, но одинаковое строение внешних оболочек, а поэтому показывают меньшую коррозионную стойкость, чем золото и платина.  [c.493]

Одной из наиболее эффективных добавок, обеспечивающих повышение коррозионной стойкости титана, является палладий. В табл. 4.3 приведены значения скоростей коррозии титана и сплава Ti + 0,2 % Pd в агрессивных неокислительных средах. Легирование титана палладием приводит также к повышению стойкости сплава против щелевой коррозии.  [c.191]

Легирование титана молибденом (сплав ВТ-14, 4201) и палладием (сплав 4200) резко повышает коррозионную стойкость сплавов. Скорость коррозии сплава ВТ-14—0,1 мм/год, 4200— 0,03 мм/год, 4201—0,015 мм/год, балл стойкости 2, сплавы относятся к группе весьма стойких.  [c.56]

Еще более эффективное действие катодные присадки оказывают на повышение коррозионной стойкости хромистых сталей. Хромистая сталь Х27 корродирует с большой скоростью в растворах серной кислоты. Легирование стали Х27 0,5% Pt, 0,71% Pd или 1,1% Pd в сильной степени повышает коррозионную стойкость этой стали как при комнатной температуре (рис. 66), так и при 100° С (рис. 67) [133]. Результаты коррозионных испытаний показывают, что наиболее эффективна добавка 0,5% Pt. Лишь немного менее эффективно >// г действует добавка палла-, г/м-час дия. При увеличении в силаве палладия с 0,71% до 1,1% коррозия стали снижается, приближаясь к уровню коррозии стали с 0,5 Pt.  [c.97]

Стерно.м и Виссенбергом [155] показано, что мроме платины и палладия, коррозионная стойкость титана повышается и при легировании его другими благородными металлами (Ru, Jr, Os, Re, Au).  [c.130]

Коррозионная стойкость металлов, которые принято называть благородными (золото, серебро, илатипа, палладий, иридий II др.) определяется в основном их тер.модинамической устойчивостью во многих весьма агрессивных средах и в меньшей степени другими факторами—пассивностью, большим перснанряжепием водорода и др.  [c.274]


Некоторые промышленные сплавы Сг—Ni—Fe—Nio, oot ветствующие по составу нержавеющим сталям с высоким содержанием никеля, содержат также несколько процентов меди. Помимо других сред, они предназначены для использования в растворах серной кислоты в широком интервале концентраций и обладают в них достаточной коррозионной стойкостью. Легирующие добавки меди выполняют ту же роль, что и добавки палладия к титану (см. разд. 5.4) за счет ускорения катодного процесса  [c.362]

Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]

Для улучшения коррозионной стойкости титана применяют поверхностное легирование его палладием, используя для этой цели метод ионной имплантации. Было показано, что имплантация палладия в поверхностные слои титана — эффективный способ повышения его пассивируе-мости и коррозионной стойкости.  [c.77]

Прутки диаметром 6,35 мм иодидного титана после электронно-лучевой бестигельиой зонной плавки имеют чистоту 99,9999 %. Из них можно вытягивать проволоку диаметром 0,25 мм без промежуточного отжига [1]. Легирование титана 0,2% палладия придает ему высокую коррозионную стойкость в переменных окислительно-восстановительных средах [31].  [c.87]

Высокая коррозионная стойкость в концентрированных кисло1ах и иеокис ляемость при нагревании на воздухе позволяют применять благородные металлы в самых жестких условиях работы. Наиболее коррозионностойкими в кислотах являются иридий, рутении, платина и золото. Палладий и серебро дозольнс легко реагируют с кислотами. В табл. 12 приведены сравнительные данные по коррозионной стойкости благородных металлов. При нагревании на воздухе платина, золото и серебро практически не окисляются. Сравнительно легко окис ляются осмий, рутений и иридий (табл. 13). Эти металлы образуют стойкие окислы, обладающие высокой упругостью паров, поэтому при высоких температурах наблюдается их испарение.  [c.404]

Палладий—золота. В системе Pd—Аи наблюдается неограниченная растворимость компонентов друг в друге (фиг. 34). Все сплавы систем],i Pd—Au пластичны и легко обрабатываются. Сплавы, богатые Pd, при нагревании покрываются цветами побежалости. Сплавы, содержащие более 20 Уо Аи, не растворяются в азотной кислоте. Высокая температура плавлеиин и коррозионная стойкость позволяют применять эти сплавы для химической посуды. Силав 60% Аи и 40% Pd в паре со сплавом 90% Р( и 10% Rli применяется для чувствительных термопар и пригодных для измерения температуры до 1200°С с очень высокой термоэлектроднижущеи силой. Различные сплавы палладия с золотом применяются для электрических контактов. Л Уалая разница между точками солидуса и ликвидуса позволяет применять эти сплавы для плавких предохранителей.  [c.420]

Титан — один из наиболее распространенных металлов его содержание в земной коре составляет 0,1% [48]. По коррозионной стойкости титан значительно уступает самому стойкому из тугоплавких металлов — Та, но тем не менее в большинстве агрессивных сред Ti более стоек, чем лучшие нержавеющее стали. Сочетание таких свойств, как высокая прочность, небольшая плотность, пластичность, высокая температура плавления и главное относительно невысокая стоимость и доступность, способствовали широкому внедрению этого металла в химическое аппаратостроение [49]. В отличие от тугоплавких металлов (за исключением Та), коррозионная стойкость которых была рассмотрена выше, Ti стоек в окислительных средах, в том числе и в HNO3. Титан уступает многим тугоплавким металлам (Nb, Мо, W) по стойкости в восстановительных средах, однако небольшие добавки палладия (0,1 ат.%) повышают стойкость титана и в этих  [c.51]

При использовании порошков палладия, серебра, меди, кремния и вольфрама (d = 0,3—2 мкм) получены легко пассивирующиеся осадки никеля [22]. Повышение коррозионной стойкости никеля в этом случае объясняется известной теорией анодной пассивности. На рис. 47 изображены потенциостатические кривые для различных никелевых покрытий, полученных при 1 к=0,5 кА/м в течение 25 мин на платиновой поверхности из электролита с pH 3—3,4 и концентрацией порошка палладия  [c.140]

В группе драгоценных металлов, к которым отноеят платину, палладий, золото и серебро, наибольшей коррозионной стойкостью обладает платина.  [c.163]

В твердом состоянии титан является довольно пассивным металлом, стонким против воздействия ряда весьма сильных химических реагентов, что объясняется большой физико-химической прочностью его поверхностной окисной пленки. Высокая коррозионная стойкость титана может быть еще более увеличена путем легирования небольшим количеством металлов платинокой группы, в частности палладием.  [c.172]

Палладий — иридий. Иридий значительно повышает твердость и механическую прочность сплавов, удельное электрическое сопротивление, понижает температурный коэффициент электрического сопротивления. Коррозионная стойкость сплавов выше, чем у чистого палладия. Сплавы, содержащие более 20 % 1г, очень тяжело обрабатываются, поэтому их в качестве контактных материалов не применяют. Известны контактные сплавы, содержащие 10 и 18% 1г. Они являются заменителями платино-иридиевых сплавов, содержащих 10 и 20 % 1г. По сравнению с последними такие сплавы менее тугоплавки, но имеют практически одинаковое удельное электрическое сопротивление и твердость, Палладиево-иридиевые сплавы дешевле платиново-ириди-  [c.300]


Хорошей коррозионной стойкостью в воде обладает цирконий и его сплавы, которые к тому же имеют более высокую по сравнению с алюминием прочность при повышенных температурах. При изготовлении оборудования должен применяться цирконий, очищенный от примесей, особенно от азота. Коррозионная стойкость циркония в водяном паре заметно снижается при повышении давления. Практически применение чистого металла возможно до 300—350" С. Небольшие добавки (около 1%) железа, никеля, олова и хрома способствуют улучшению антикоррозионных свойств циркония. Аналогичный эффект достигается легированием циркония добавкой 2% палладия или 2% молибдена. Из сплавов циркония за рубежом широко применяют циркаллой-2 (1,5% Sn, 0,12% Fe, 0,05% Ni, 0,1% Сг). Этот сплав обладает коррозионной стойкостью в воде при температуре до 350° С.  [c.287]

Как показывает рис. 8, титан, имеющий очень высокую коррозионную стойкость но отношению к окислителям, при добавлении палладия ста новится коррозионностойкнм и по отношению к восстановителям. Этот сводный график показывает также пределы применения других металлов и сплавов в окислительной и восстановительной коррозионных средах в присутствии хлоридов или без них. Окислительная среда может быть создана в присутствии азотной кислоты, хлорида железа(П1), царской водки, хлорида меди(П), перекиси водорода и гипохлорита натрия. Восстановительная или неокислительная среда создается в присутствии соляной, серной, фосфорной, уксусной и щавелевой кислот и хлористого алюминия.  [c.26]

Хотя сведений о коррозионной стойкости сплавов на основе титана опубликовано очень мало, считается, что в основном она сравнима с коррозионной стойкостью нелегированного титана. Разработка специальных кор-рознонностонких сплавов на основе титана была осуществлена вслед за разработкой высокопрочных титановых сплавов. Разработано два типа специальных коррозионностонких титановых сплавов. Сообщалось, что один из них на основе Р-титана, содержащий 25—40% молибдена, обладает превосходной коррозионной стойкостью в кипящей серной и соляной кислотах. Другой, содержащий небольшие добавки палладия или платины, обладает превосходной коррозионной стойкостью против де11ствия соляной и серной кислот.  [c.765]

Идеальным электродным материалом является такой, в котором активного состояния не возникает вследствие самопассивации и при этом образование газообразного хлора при соответствующем потенциале не сопровождается коррозией. Это имеет место только тогда, когда максимальный ток активн ого растворения и минимальный ток пассивации малы, а коррозионная стойкость, естественно, велика. Для повышения коррозионной стойкости аморфных сплавов Pd—Р весьма эффективно легирование их элементами подгруппы платины (Rh, Pt, Ir) [40]. На рис. 9.29 показаны кривые анодной поляризации аморфного сплава Pd—Rh—Р при температуре, близкой к 80°С, в применяемом в промышленности для электролиза поваренной соли 4 М водном растворе iNa l (pH 4). Сплавы, содержащие >20% (ат.) Rh, пассивируются при довольно высоком потенциале, при еще большем потенциале ( 1,0 В) происходит выделение газообразного хлора и электрический ток быстро возрастает с повышением потенциала. Таким образом, если сплавы палладия, легированные подходящими элементами, аморфизу-ется, то их можно использовать как материалы для электродов, поскольку они соединяют в себе высокую каталитическую активность, способствующую выделению газообразного хлора, и высокую коррозионную стойкость.  [c.282]

При легировании титана палладием (от 0,01 % до 5,0%) и платиной повышается его коррозионная стойкость в растворах H2SO4, НС1, Н3РО4 и в органических кислотах.  [c.221]

Повышение коррозионной стойкости титана в агрессивных средах, не содержащих окислителей, может быть достигнуто ионным легированием палладия, рутения и платины достаточно содержания легирующей добавки в несколько десятых долей процента. При облучении титана, например, ионами палладия с энергией 40—90 кэВ при дозах 10 —5-10 моль/см максимальная концентрация палладия достигается на расстоянии 10 нм от поверхности для ионов с энергией 40 кэВ и 20 нм для ионов с энергией 90 кэВ. При увеличении дозы облучения от 10 до 10" моль/см поверхностный слой титана постепенно обогащается палладием с изменением фазового состава поверхностного слоя, вместо образования соединений Т12Рс1 и ТгРйг на поверхности титана формируется металлическая пленка палладия. При дозах облучения палладием 5-10 —10" моль/см и энергии 20—100 кэВ коррозионная стойкость титана возрастает более чем в 10 раз.  [c.135]

Приведенная на рис. 63 анодная нотенциостатическая кривая для титана показывает, что в растворе серной кислоты в атмосфере водорода, а тем более в атмосфере кислорода, стационарные потенциалы сплавов титана с платиной и палладием находятся в области пассивных значений. Весовые измерения коррозионной стойкости образцов (табл. 7) подтверждают самопроизвольную пассивируе-мость катодно-легированного титана в этих условиях не только в кислородной, но также и в водородной атмосфере.  [c.91]


Смотреть страницы где упоминается термин Палладий Коррозионная стойкость : [c.382]    [c.67]    [c.294]    [c.78]    [c.79]    [c.163]    [c.400]    [c.420]    [c.422]    [c.42]    [c.26]    [c.281]    [c.210]    [c.261]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.282 ]



ПОИСК



Паллада

Палладий

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте