Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Факторы, влияющие на механические потери

Известно очень мало данных о влиянии химической и физической структуры полимеров на их выносливость. Влияние некоторых структурных факторов на механические потери полимеров рассмотрены в гл. 4. Однако практически не установлено никакой связи между химической и молекулярной структурой полимеров и условиями образования и прорастания трещин. Связь между образованием трещин и наличием неоднородностей структуры и дефектов коротко рассмотрена в гл. 5. Обычно факторы, повышающие прочность полимеров, обусловливают также возрастание выносливости. Так, при увеличении молекулярной массы полимеров их выносливость возрастает до определенного предела [47, 48]. Выносливость повышается также при уменьшении вероятности образования микротрещин, например при ориентации в направлении, параллельном прикладываемому напряжению [49]. Ориентация заметно влияет на выносливость деталей из полипропилена, получаемых литьем под давлением и подвергаемых при эксплуатации многократному изгибу. Поскольку выносливость в решающей степени определяется прорастанием трещин, надрезы и царапины на образцах могут вызвать резкое уменьшение выносливости, особенно в материалах, чувствительных к надрезам. В полимерных волокнах и вулканизованных каучуках усталостное разрушение сопровождается разрывом полимерных цепей и образованием свободных радикалов.  [c.206]


Механические потери по нагрузочной характеристике меняются незначительно. Некоторые факторы влияют в направлении уменьшения механических потерь при снижении мощности. К этим факторам относятся следующие уменьшение нагрузки от давления газов (на шатунные подшипники и от поршня на втулку), уменьшение мощности топливного насоса вследствие сокращения подачи топлива. К факторам, повышающим механические потери для четырехтактных двигателей, относятся увеличение насосных потерь вследствие возрастания газодинамических сопротивлений при прохождении газа через выпускные клапаны, что связано с понижением температуры отработавших газов и увеличением плотности газа, и увеличение вязкости масла из-за понижения температур деталей цилиндро-поршневой группы, что приводит к увеличению механических сопротивлений трения поршня о втулку. В результате можно допустить, что механические потери при постоянной частоте вращения сохраняются примерно неизменными или незначительно повышаются по мере снижения нагрузки. Поэтому механический к. п. д. по мере понижения мощности неуклонно понижается. Действительно,  [c.223]

Часто наблюдается хорошая корреляция между ударной прочностью и динамическими механическими потерями в ударопрочных полимер-полимерных композициях [249, 251, 257, 259, 260, 272]. Ударная прочность обычно возрастает с повышением пика механических потерь, соответствующего эластичной фазе [257, 259, 260]. Наилучшая корреляция наблюдается для ряда одинаковых материалов, хотя морфология эластичной фазы, метод получения образцов, адгезия и другие факторы могут до некоторой степени влиять на эту корреляцию. Наибольшее влияние на величину пика механических потерь и на соответствующее падение модуля упругости оказывает содержание эластичной фазы. При этом важно не количество введенного эластомера, а общее количество эластичной фазы (эластомера с распределенным в нем жестким полимером), которое определяет величину пика механических потерь.  [c.189]

При сжигании каких топлив появляется потеря теплоты от механической неполноты горения и чем она обусловлена Какие факторы влияют на эту потерю  [c.62]

Мощность механических потерь зависит также от таких факторов, как давление рабочего тела и количество масла в картере двигателя. Давление рабочего тела и его молекулярная масса влияют на вентиляционные потери, а количество масла определяет энергию, затрачиваемую на взбалтывание масла, так как смазка двигателя очень часто осуществляется методом разбрызгивания.  [c.120]


Потеря напора воды в механическом фильтре является важным показателем его работы. На потерю напора влияют следующие факторы 1) гранулометрическая характеристика фильтрующего материала 2) высота слоя фильтрующего материала 3) скорость фильтрования 4) степень засорения фильтрующего материала. Из перечисленных четырех факторов первые три являются для данного механического фильтра заданными и более или менее постоянными. Обусловленная этими факторами потеря напора воды в фильтре также будет определенной и постоянной. Что же касается  [c.70]

Следует отметить, что приведенные расчеты параметров упругой деформации могут считаться лишь ориентировочными. Кроме тех факторов, которые учтены в расчетах, на величину упругой деформации существенно влияют конструкция технологической оснастки станка, механические свойства металла, размеры заготовки (главным образом диаметр) и др. Большое влияние на пружинение оказывает также потеря устойчивости металла заготовки в процессе изгиба. 52  [c.52]

При правильном выборе геометрических параметров и режимов работы дросселя линейная зависимость между расходом воздуха и разностью давлений до и после дросселя выдерживается с достаточной степенью точности. Вместе с тем имеется ряд факторов, под влиянием которых могут происходить отклонения от этой зависимости. Наибольшее значение для приборов пневмоники, работающих с малыми давлениями питания, имеют следующие из них нарушение ламинарного режима течения в канале дросселя (при превышении граничного значения числа Рейнольдса) увеличенные потери механической энергии потока на начальном участке формирования ламинарного течения местные сопротивления при входе потока в канал дросселя и на выходе из него. С увеличением перепадов давлений, под действием которых происходит истечение через дроссель, расходная характеристика дросселя оказывается уже нелинейной. Кроме того, с изменением давления на входе и на выходе, вследствие изменения плотности воздуха, становится неоднозначной зависимость между весовым расходом воздуха и разностью давлений до и после дросселя. При больших изменениях скорости воздуха по длине канала дросселя на характеристики процесса течения и в связи с этим на величину потерь, возникающих при дросселировании, может влиять и действие сил инерции, обусловленных ускорением потока воздуха в канале дросселя.  [c.243]

К числу первых можно отнести сварку нагретым элементом (роликом, клином, лентой и т. п.), присадкой и газовым теплоносителями. Ко вторым относятся сварка токами высокой частоты, инфракрасным излучением, трением и ультразвуком. Следует, однако, отметить, что эта классификация относительно ультразвуковой сварки несколько условна. Свариваемый материал в процессе УЗС находится под воздействием двух факторов 1) скорости колебательного смещения и колебательного давления сварочного наконечника 2) температура сварочного наконечника, которая является следствием внутренних потерь в материале концентратора—волноводном звене, передающем энергию механических колебаний в зону сварки. Эти потери весьма велики, что приводит к его разогреву. Вследствие этого, сварочный наконечник является внешним источником тепловой энергии, которая также существенно влияет на процесс сварки. Отсюда следует, что УЗС по принципу ввода энергии в классификации методов сварки полимеров занимает особое место.  [c.143]

Хотя измерения ползучести густосетчатых полимеров с очень плотной сеткой поперечных связей в стеклообразном состоянии (отвержденных термореактивных смол типа фенолоформальде-гидных) довольно многочисленны, эти эксперименты обычно имели чисто прикладную цель, и их теоретическое значение мало, поскольку плотность сетки, как правило, не контролировалась. Очевидно, частота узлов сетки практически не влияет на ползучесть полимеров при температурах, лежащих значительно ниже Т . В жестких хрупких полимерах молекулярная подвижность заморожена и дополнительные ограничения, налагаемые поперечными связями, едва ли могут проявиться заметно. Ползучесть жестких стеклообразных полимеров определяется в наибольшей степени величиной модуля уИругости и разностью между и температурой испытаний. Для некоторых полимеров такого типа, например для отвержденных феноло- и меламиноформальдегид-ных смол, характерны высокие значения модуля упругости, низкие механические потери и высокая Т . Все эти факторы резко снижают деформации и скорость ползучести, так что полимеры этого типа обладают обычно низкой ползучестью и высокой стабильностью размеров. С другой стороны, некоторые отвержденные эпоксидные и полиэфирные смолы обладают значительно более высокой ползучестью. Их модуль упругости при сдвиге может быть ниже 10 Па вследствие существования вторичного низкотемпературного перехода [136—1391. Кроме того, вследствие особенностей их строения и низкой температуры отверждения многие эпоксидные и полиэфирные смолы обладают относительно низкими Т . Поэтому эти смолы обычно характеризуются значительно более высокой ползучестью, чем фенолоформальдегидные смолы.  [c.75]


Механические потери играют очень большую роль в трении качения, например автомобильных шин. Если бы полимеры были идеально упругими (механические потери отсутствовали бы), изготовленные из них шары или колеса перемещались бы практически без трения при качении по гладкой поверхности. При качении шар или колесо вдавливается в материал поверхности и сжимает его впереди себя, однако позади материал расширяется и как бы подталкивает шар или колесо. Если в полимере возникают механические потери, то часть энергии, затраченной на деформирование, рассеивается в виде тепла. Таким образом, сопротивление трению качения должно коррелировать с механическими потерями, и факторы, изменяющие их, должны аналогичным образом влиять на коэс ициент трения качения [58, 60, 65—74]. Уравнение, связывающее коэффициент трения качения Для шара с показателями механических потерь, было выведено Фломом [58, 68]. После некоторых уточнений это уравнение приняло вид [73]  [c.208]

В различных. механических систе.мат. включающих такие машины, как насосы, турбины, компрессоры и т. п., помимо необходимости замедления и поворота потока требуется еще и компактность подводящих каналов. Все это достигается в диффузорных коленах или (что то же) кривоосных диффузорах (см. диагра.м.му 5-21). Течение в таких диффузорах значительно сложнее, чем в прямоосных диффузорах, и является синтезом а) течения в прямоосном диффузоре б) течения в изогнутом канале постоянного сечения. Последнее сопровождается вторичными потоками, связанными с неравномерностью поля скоростей и давлений в направлении, перпендикулярном к плоскости изгиба, и наличием пограничных слоев у стенок канала (см. шестой раздел). Эти факторы обусловливают более ранний отрыв потока и вызывают потери давления, отличные от потерь в прямоосных диффузорах. На сопротивление кривоосного диффузора, помимо параметров, указанных в п. 11, влияют угол изогнутости оси р и относительный радиус кривизны оси J o/Z>o(r/io).  [c.205]

Для полимеров даже сравнительно небольшое изменение температуры (20—60 °С) может привести к существенному изменению таких механических характеристик, как модуль упругости, модуль потерь и др. На зависимость этих характеристик от температуры влияет набухание образцов в жидкостях. Кинетика процессов сорбции, набухания и диффузии жидкости в полимерном материале также изменяется. Совокупность этих факторов приводит к существенному изменению характера и скорости процессов разрушения пластмасс. С повышением температуры псевдохрупкий механизм разрушения может трансформироваться в пластический, как это видно из анализа фрактограмм (рис. V.8). Указанные  [c.182]

Расхождение чисел оборотов По и Па объясняется тем, что на величину Ле, кроме наиолнения, влияют также и другие факторы (наиболее существенным из которых является непрерывное увеличение мощности, расходуемой на преодоление механических сопротивлений и насосных потерь в двигателе).  [c.52]

На выбор оптимального материала влияют не только эксплуатационные характеристики, но и технология изготовления деталей заданной формы, и стоимость изготовления. С этой точки зрения очень выгодны магнитодиэлектрики - материалы, состоящие из ферро- или ферримагнитных частиц размерами от 1 до 100 мкм, разделенных изолирующим веществом (жидкое стекло, синтетические смолы). Из-за внутреннего размагничивания частиц уменьшаются потери на вихревые токи, слабо изменяется проницаемость в магнитных полях до 2000 А/м, обеспечиваются высокая стойкость к подмагничивающим полям, хорошая стабильность во времени и много других положительных факторов, трудноосуществимых в материалах с другой структурой. Электромагнитные свойства магни-тодиэлектриков сохраняются при механической нагрузке до полного их разрушения.  [c.599]


Смотреть страницы где упоминается термин Факторы, влияющие на механические потери : [c.410]    [c.94]    [c.373]   
Смотреть главы в:

Автомобильные двигатели Издание 2  -> Факторы, влияющие на механические потери



ПОИСК



Потери механические

Фактор потерь

Факторы влияющие



© 2025 Mash-xxl.info Реклама на сайте