Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Влияние термообработки

Цилиндрический одноступенчатый редуктор. Следует проанализировать влияние способа термообработки и относительной ширины колес на массу зубчатых колес, массу /Иред редуктора, межосевое расстояние а , диаметры df] и df2 окружностей впадин зубьев шестерни и колеса, окружную силу F, в зацеплении.  [c.39]

Планетарный редуктор. Анализируют влияние способа термообработки и относительной ширины колес на массу зубчатых колес, массу /Нред редуктора, межосевое расстояние а ,, диаметры и окружностей впадин зубьев солнца, сателлита и эпицикла.  [c.39]


РАСЧЕТНЫЙ АНАЛИЗ ВЛИЯНИЯ НИЗКОТЕМПЕРАТУРНОЙ ТЕРМООБРАБОТКИ НА ДОЛГОВЕЧНОСТЬ КОЛЛЕКТОРОВ  [c.357]

На практике влияние термообработки наблюдается редко, так как в обычных средах скорость коррозии лимитируется диффузией кислорода. Однако при переработке кислых пластовых вод нефтяных скважин иногда наблюдается значительная локальная коррозия в околошовных зонах или на стыках стальных обсадных труб. Эта коррозия, сосредоточенная на ограниченных участках внутренней поверхности труб, называется кольцевой . Она вызвана термическими воздействиями при изготовлении и монтаже оборудования и может быть снижена с помощью специальной термической обработки труб или добавлением ингибиторов в пластовые воды [50].  [c.130]

Рис. 7.1. Влияние термообработки на коррозию холоднодеформированных стали (0,076 % С, деформация 85 %) и железа, очищенного зонной плавкой, (деформация 50%) в деаэрированной 0,1 н. НС1 25 °С [2] Рис. 7.1. Влияние термообработки на коррозию холоднодеформированных стали (0,076 % С, деформация 85 %) и железа, очищенного <a href="/info/33518">зонной плавкой</a>, (деформация 50%) в деаэрированной 0,1 н. НС1 25 °С [2]
При средних нагрузках для уменьшения влияния термообработки на прочность колес зубья нарезаются после улучшения или нормализации заготовок (твердость НВ 320- -350).  [c.172]

ТАБЛИЦА 80. ВЛИЯНИЕ ТЕРМООБРАБОТКИ, ХИМИЧЕСКОГО СОСТАВА И ТЕМПЕРАТУРЫ НА ОТНОСИТЕЛЬНОЕ СУЖЕНИЕ ХРОМИСТОЙ БРОНЗЫ  [c.183]

Влияние термообработки на механические характеристики лри растяжении и изгибе углерод-углеродных композиционных материалов 30 [109]  [c.182]

В результате термообработки величина Не увеличивается, достигая максимального значения после нагрева при 350 С При дальнейшем повышении температуры нагрева коэрцитивная сила уменьшается Величина максимальной магнитной индукции зависит от содержания фосфора в покрытии и температуры термообработки С повышением температуры нагрева величина максимальной магнитной индукции увеличивается, достигая наибольшего значения в интервале температур 350—500 °С Дальнейший рост темпе ратуры нагрева приводит к снижению этой величины С увеличением содержания фосфора в покрытии величина максимальной магнитной индукции снижается На характер изменения величины остаточной магнитной индукции с повышением температуры обработки оказывает большое влияние содержание фосфора в осадке  [c.19]


Влияние времени термообработки при 1400° С на КТР композиций  [c.140]

Влияние режима термообработки на фазовый состав закристаллизованных стекол  [c.124]

Влияние режимов термообработки на фазовый состав закристаллизованных стекол изучали методами рентгеноструктурного анализа, результаты которого представлены в табл. 1, и электронной микроскопии. Как было видно на снимках, исходное стекло имеет ликва-ционную структуру, проявляющуюся в виде двухфазного расслое-  [c.124]

Термическая обработка титановых сплавов может очень сильно влиять на склонность к коррозионному растрескиванию, при этом изменяются и и скорость распространения трещины. Важнейшие факторы здесь температура нагрева, время выдержки и особенно скорость охлаждения. Наиболее благоприятная термическая обработка всех титановых сплавов, повышающая их стойкость к коррозионному растрескиванию,—нагрев до температуры, близкой к (а + ) переходу, небольшая выдержка при этих температурах и быстрое охлаждение, при этом решающим фактором режима обработки является скорость охлаждения. Наоборот, длительные отжиги при средних и низких температурах и особенно с медленным охлаждением сильно увеличивают склонность сплавов к коррозионному растрескиванию. Естественно, что влияние термической обработки на сплавы различных классов неодинаково [36]. Сплавы а и псевдо-а-сплавы, если в них не более 6 % алюминия и нормированное содержание газовых примесей (Оа, М, На), ускоренным охлаждением от температур, близких к (о + /3) /3-переходу, можно перевести в разряд практически не чувствительных к растрескиванию в галогенидах. Термическая обработка (а + ) сплавов, легированных -изоморфными элементами, в меньшей степени влияет на их чувствительность к коррозионной среде, чем термообработка а-сплавов. Влияние термообработки на коррозионное растрескивание стабильных /3-сплавов мало изучено, но при этом общие закономерности сохраняются.  [c.40]

Для исследования влияния термообработки на распределение твердости и электродных потенциалов в сварном соединении проводили закалку (920° С) с высоким отпуском (690 °С) и отжиг (920 °С).  [c.232]

Две последние части сопротивления от температуры не зависят (если не считать влияния термообработки, изменяющей количество дефектов решетки). В широком диапазоне температур сопротивление чистых металлов, а также сплавов зависит от температуры линейно.  [c.36]

ВЛИЯНИЕ ТЕРМООБРАБОТКИ НА СВОЙСТВА СТАЛЕЙ  [c.108]

Исследовалось влияние термообработки на свойства металлизированного углеродного волокна. На примере меди и никеля изучалось поведение металлических покрытий при повышенных температурах. Посредством сканирующей электронной микроскопии было обнаружено собирание покрытия в складки при 400° С с дальнейшей сфероидизацией по мере увеличения температуры отжига. Установлено, что медное покрытие не снижает прочность углеродных волокон до температуры 800 С, а никелевое — до 900° С. После термообработки при 1000° С прочность углеродных волокон, отожженных в контакте с никелем, уменьшается. Рис. 2, библиогр. 5.  [c.228]

В литературе описаны результаты ряда исследований влияния термической обработки на структуру и свойства стали ШХ-15 [1—4]. Однако эти работы были посвящены изучению влияния термообработки на фазовый состав и макроструктуру стали. В то же время известно, что тонкая кристаллическая структура оказывает существенное влияние на ее механические свойства. Следовательно, изучение влияния термической обработки на тонкую кристаллическую структуру широко применяемой в промышленном производстве стали ШХ-15 имеет научное и определенное практическое значение.  [c.175]

Опыты Мегера и Неля [111] были проведены на машине Амслера с роликами диаметром 40 мм. Напряжение сжатия составляло 43 кг/мм У высокопрочной стали (твердость по Бринеллю 170 предел выносливости ств = 61,7 кг/мм ) наблюдалось резкое изменение износостойкости в зависимости от нагрузки. При росте напряжения сжатия от 43 до 60 кг/мм скорость износа возросла от 19,1 до 81 мк об. У стали с (Тв = 34 кг/мм2 л твердостью НВ-95 скорость износа измерялась от 35 до 104 мк /об. Влияние термообработки на скорость износа этой марки стали видно из табл. 4 (при Р = 43 кг/мм ).  [c.108]


Таблица 48. Влияние термообработки на механнчес ию свойства стали Таблица 48. Влияние термообработки на механнчес ию свойства стали
Таблица 50. Влияние термообработки на механические своКства металла пша при сварке низкоуглеродистой стали Таблица 50. Влияние термообработки на механические своКства металла пша при сварке низкоуглеродистой стали
Для получения сварных соединений, обладающих высокой работоспособностью, после сварки, как п )ани.то, необходима термообработка для восстановления свойств мотал.ла в зоне термического влияния. Режим термообработки определяется примени-Т8Л1.Н0 к данной марке теплоустойчивой стали. Исключение составляют сварные соединения из молибденовых и хромомолибденовых сталей толщиной менее 10 мм и из хромомолибдеповападие-вых толщиной менее 6 мм.  [c.240]

Для приближенного определения характера структуры обычно пользуются диаграммой Шеффлера, предварительно подсчитав эквивалеитпые содержания никеля и хрома. На структуру этих сталей оказывает влияние также термообработка, пластическая деформация н другие факторы. По )тому положение фазовых областей на диаграммах состояния определено для немногих систем в виде псевдобинарн1,[х разрезов тройных систем, обычно Fe—Сг—Ni с углеродом.  [c.281]

Конический одноступенчатый редуктор. Анализируют влияние способа термообработки зубчатых колес на их массу т , массу /Яред редуктора, внешнее конусное расстояние внешний диаметр вершин зубьев колеса, средний делительный диаметр d шестерни, окружную силу Р, в зацеплении.  [c.39]

Режим термической обработки сплавов изменяет предел их коррозиопно усталости. Под влиянием термообработки изменяются внутренние факторы сплава. Структурное состояние, опре-.деляемое видом термической обработки, как было указано выше, в сильной степени влияет на усталостную прочность стальных. деталей. В результате закалки с последующим отпуском значи-  [c.106]

Из перечисленных выше способов наиболее эффективно азотирование, которое практически полностью устраняет влияние концентраторов напряжений. Для азотированных деталей коэффициент д чувствительности к концентрации напряжений близок к нулю (т. е. эффективный коэффициент концентрации напряжений к йй 1). Азотирование почти не вызывает изменения формы и размеров деталей. Это позволяет во многих случаях устранить заключительное шлифование и бв,кгс1ммг сопутствующие ему дефекты, снижающие прочность. Кроме того, азотированный слой обладает повышенной коррозие- и термостойкостью. Твердость и упрочняющий эффект в противоположность обычной термообработке сохраняются до высоких температур (500—60б°С). Сочетание этих качеств делает азотирование ценным способом обработки деталей, работающих при повышенных температурах и подвергающихся высоким циклическим нагрузкам и  [c.317]

Рис. 6.16. Влияние термообработки на коррозию стали (0,95 % С) в 1 % Н 304 Полированные образцы 25X25X6 мм, время отпуска примерно 2 ч [49] Рис. 6.16. Влияние термообработки на <a href="/info/6793">коррозию стали</a> (0,95 % С) в 1 % Н 304 Полированные образцы 25X25X6 мм, время отпуска примерно 2 ч [49]
Рис. 6.17. Влияние термообработки стали (0,95 % С) на относительное распределение углерода. в виде газа, сажи и карбидов в продуктах коррозии. Коррозия в 10% H2SO4 [49] Рис. 6.17. Влияние <a href="/info/384992">термообработки стали</a> (0,95 % С) на относительное распределение углерода. в виде газа, сажи и карбидов в <a href="/info/107178">продуктах коррозии</a>. Коррозия в 10% H2SO4 [49]
Движение материала, подвергающегося термообработке, также тесно связано с тепловым режимом печи и оказывает большое влияние на скорость технологического процесса. Так, движение расплава в реакторе фосфорных или хлорбариевых печей играет решающую роль в равномерном нагреве расплава, а движение твердых материалов, например во вращающихся барабанных печах, имеет определяющее влияние на скорость и полноту процесса переработки, так как от интенсивности движения и перемешивания зависят величина активной реакционной поверхности и теплообмен в зоне контакта.  [c.255]

Эксперименты по изучению влияния термообработки на охрупчивание материалов показали, что верхние температурные пределы области чумы и упрочнения границ зерен Мо312, 2гВе1з и КгА близки.  [c.291]

Изложено влияние способа подготовки поверхности металла, и условий нанесения оксидных покрытий плазменным методом на некоторые их свойства. Описана установка для оценки проницаемости покрытия в жидких и газообразных средах. Изучено влияние термообработки на взаимодействие между различными компонентами покрытия. Проведено металлографическое изучение границы раздела металл—покрытие. Показана перспективность нанесения двухслойных покрытий для защиты металла, в частности стали, от воздействия атмосферы при повышенных температурах, а также от действия расплавленных сред, не растворяющих окись алюминия. Библ. — 2 назв., рис. — 3, табл. — 4.  [c.344]


При определении влияния предварительной термообработки для образцов № 2, 3 нс удалось установить однозначной зависимости характеристик ползучести от числа циклов термообработки. Так, один цикл нагрева образца с покрытием № 3 увеличивает долговечность в 1.5 раза, в то время как та же термообработка у покрытия № 2 вызывает резкое разупрочнение. 5 и 10 циклов предварительного нагрева образцов № 3 вызывают уменьшение времени до разрушения в среднем в 1.5 и 2 раза соответственно, а один цикл с медленпы.м нагревом — в 10 раз. У образцов с покрытием № 4 явно выражено повышение сопротивления ползучести с увеличением времени дополнительной термообработки. Д.ля 50 мин минимальная скорость ползучести уменьшилась в 1.5 раза, а для 500 мин — в 3 раза по сравнению с образцами без термообработки.  [c.49]

Влияние режима термообработки на структуру и состав полимерной матрицы не всегда поддается количественному анализу. Это вызвано тем, что на свойства полимерной матрицы влияют не только температура и время выдержки полимера при определенной температуре, но и скорость нагрева. Не поддается учету изменение полимера при нестационарном прогреве до заданной температуры. Кроме того, при нагреве видоизменяется структура полимера как за счет процессов структурирования (в учет не принимается изменение состава полимера за счет- потери, например, части гидроксильных групп, участвующих в процессе сшивки), так и за счет изменения и структуры, и состава полимера в результате прохождения деструк-ционных процессов.  [c.72]

Полученные кинетические кривые указывают на снижение СРТ при возрастании размера зерна в титановых сплавах (Ti-115 и Ti-155) (рис. 5.1). Происходит снижение СРТ при возрастании предела текучести материала при одинаковом размере зерна. Изменение размера зерна на порядок, например в случае Ti-115, оказывает также существенное влияние на СРТ при почти неизменной величине предела текучести материала (табл 5.1 и рис. 5.1). Однако при малых размерах зерен влияние предела текучести неоднозначно. При скоростях менее 3x10 мм/цикл имеет место снижение скорости в случае возрастания предела текучести материала, а далее наблюдается инверсия и СРТ начинает возрастать. Важно подчеркнуть, что при разных вариантах термообработки сплава, вариации химического состава, приводивших к изменениям размера зерна и предела текучести, имело место эквидистантное смещение кинетических кривых.  [c.241]

Повышение коррозионной стойкости и долговечности сварных соединений в условиях малоциклов ой коррозионной усталости может быть достигнуто, в частности, уменьшением или устранением электрохимической гетерогенности путем термообработки. О некотором влиянии термообработки можно судить по результатам, приведенным па рис. 99 наружный шов подвергается более интенсивному растворению, чем внутренний, который претерпел нагрев при наложении наружного шва.  [c.232]

Рис. 4-20. Влияние термообработки листовых материалов из алюми-ииевых сплавов на электрическую проводимость плакированных образцов-свидетелей. Рис. 4-20. Влияние термообработки листовых материалов из алюми-ииевых сплавов на <a href="/info/33941">электрическую проводимость</a> плакированных образцов-свидетелей.
В сборнике излагаются физические основы контроля состояния структуры, механических свойств и остаточных напряжений. Дан расчет гармонических составляющих эдс проходного датчика при воздействии на ферромагнетик постоянного подмагничивающего поля и двух переменных полей разной частоты. Представлены новые данные по разработке магнитных, электрических, тепловых способов и средств контроля. Подробно анализируются результаты исследований влияния термообработки на магнитные и механические свойства среднеуглеродистых и слаболегпрованных сталей, применяемых в машиностроении, даются рекомендации по выбору средств их контроля.  [c.2]


Смотреть страницы где упоминается термин Влияние Влияние термообработки : [c.220]    [c.73]    [c.285]    [c.183]    [c.47]    [c.45]    [c.176]    [c.44]    [c.109]    [c.632]    [c.219]    [c.231]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.316 ]



ПОИСК



Термообработка



© 2025 Mash-xxl.info Реклама на сайте