Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая теория интегрирования уравнений равновесия теории упругости

X. ОБЩАЯ ТЕОРИЯ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ РАВНОВЕСИЯ ТЕОРИИ УПРУГОСТИ.  [c.125]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но гг они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости п таких прикладных дисциплин, как строительная механика и сопротивление материалов.  [c.291]

Наличие этих данных позволяет нам при помощи формулы (2.301) (см. главу II книги) вычислить главные нормальные напряжения Р и Q в отдельности. Авторы применяют этот способ графического интегрирования при решении различного рода задач, рассматриваемых в книге. Однако, помимо этого способа графического интегрирования, существует ряд других способов, которые также дают возможность на основе данных эксперимента вычислить Р и Q в отдельности. Больше того, можно привести некоторую общую теорию графического интегрирования уравнения равновесия плоской задачи теории упругости, при наличии данных оптического метода изучения напряжений, из которой формула (2.301) вытекает как частный случай.  [c.577]

Решение общей задачи теории упругости, а именно, интегрирование уравнений движения или равновесия при определенных граничных условиях, т. е. при заданных на поверхности тела напряжениях или смещениях, получено только для тел очень простой формы (например, для шара и эллипсоида). Инженер имеет дело с телами сложной формы (как, например, коленчатые валы) и вынужден обычно пользоваться приближенными решениями, которые мы дали для балок и пластинок.  [c.480]


Введенке. В этой главе мы рассмотрим решения уравнений равновесия изотропного упругого телд при ПОМОЩИ разложений в ряды гармонических функций и главным образом в ряды сферических функций. Мы начнем с некоторых специальных типов решений, полученных при помощи сферических функций и дающих важные, результаты, касающиеся равновесия шара, которые являются началом приложений теории упругости к геофизике. Мы будем следовать Кельвину, который выразил общее решение задачи 1) о шаре при помощи сферических функций, рассматривая их как функции декартовых координат и избегая преобразования к полярным координатам. После этого мы дадим некоторые применения рядов гармонических функций, отличных от сферических функций, для интегрирования уравнений равновесия.  [c.261]

Первый мемуар Пуассона зб) по рассматриваемому вопросу был прочитан Парижской академии в апреле 1828 г. Этот мемуар интересен заключающимися в нем многочисленными приложениями общей теории к частным задачам. При рассмотрении вопроса об общих уравнениях Пуассон так же, как и Коши, начинает с вывода уравнений равновесия, выраженных в компонентах напряжения, и вычисляет усилие на какой-либо площадке, происходящее от интрамолекулярных сил. Формулу, выражающие напряжения через деформации, содержат суммы, которые берутся по всем молекулам , находящимся в области действия данной молекулы . Пуассон не находит возможным заменить все суммы интегралами и считает, что это может быть сделано лишь при суммировании по телесному углу вокруг данной молекулы , ро не при суммировании по величине,, расстояния, отсчитываемого от нее. Уравнения равновесия и движения, изотропного упругого твердого тела, которые получаются таким образом, не отличаются от уравнений Навье. Принцип, по которому суммирования могут быть заменены интегрированием, разъяснен Коши зз) следующим образом для, объема, содержащего очень много молекул и имеющего малые размеры по сравнению с радиусом той сферы, в которой проявляется заметное молекулярное действие, число молекул можно считать пропорциональным объему если теперь мы оставим в стороне молёкулы находящиеся в непосредственной близости к рассматриваемой молекуле, то действие всех молекул, заключенных в одном из малых объемов, о которых была речь, эквивалентно силе, ухиния действия которой проходит через центр тжкести объема, а величина пропорциональна этому объему и некоторой функции от расстояния между центром тяжести объема и данной рассматриваемой молекулой. Действие более удаленных молекул именуется регулярным , а действие более близких— нерегулярным . Пуассон считал, что нерегулярным действием более  [c.23]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]



Смотреть страницы где упоминается термин Общая теория интегрирования уравнений равновесия теории упругости : [c.43]   
Смотреть главы в:

Математическая теория упругости Выпуск1 Изд2  -> Общая теория интегрирования уравнений равновесия теории упругости



ПОИСК



Интегрирование

Интегрирование уравнений

Интегрирование уравнений равновесия

Интегрирование уравнений теории упругости

Общие уравнения

Общие уравнения равновесия

Теории Уравнения

Теория Уравнения общие

Теория Уравнения равновесия

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения равновесия в теории упругости

Уравнения равновесия сил

Уравнения равновесия уравнения

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте