Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальное исследование динамических упругих свойств

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ УПРУГИХ СВОЙСТВ  [c.123]

Большинство экспериментальных исследований динамических упругих свойств твердых тел было проведено с образцами из металлов или из высоких полимеров. Имеется, однако, большое количество  [c.145]

Установке демпферов предшествовали экспериментальное исследование динамических свойств топливоподающего тракта (включая работающие насосы), а также значительный объем расчетно-теоретических исследований, позволивших выбрать оптимальное значение упругой характеристики демпферов. На рис. 1.53 представлен полученный в процессе этих исследований корневой  [c.124]


Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]

В соответствии с принятой расчетной схемой и составленным математическим описанием проведены теоретические исследования на ВМ. Типичная осциллограмма, полученная для условий, близких к имевшимся при экспериментальном исследовании, представлена на рис. 2. Сопоставление теоретической и экспериментальной осциллограмм показывает, что принятая расчетная схема и составленное математическое описание достаточно полно отражают основные динамические свойства исследуемой системы и позволяют переносить результаты теоретического исследования на реальные системы. Проведенные теоретические исследования позволили получить более полные характеристики переходных и неустановившихся процессов, возникающих при разгоне и торможении системы, с учетом упругости жидкости и трубопроводов, выбраны рациональная последовательность работы и характеристики управляющей и регулирующей аппаратуры. Результаты исследований показали, что при наилучших параметрах тормозного режима клапана величина тормозного давления составляет 362 и 365 кгс/см , сила удара клапана о седло 6,7 и 5 т соответственно при закрывании и открывании клапана, имеют место отскоки клапана от конечных положений с последующими его ударами о седло или упоры, а в напорной магистрали во время торможения возникают динамические перегрузки. Теоретические исследования режима торможения клапана встроенным гидротормозом, закон изменения проходного сечения которого в функции перемещения поршня уточнен по результатам предварительных теоретических исследований, показали, что такой тормозной режим обеспечивает плавный подход и точную остановку клапана в конечном положении, причем давления в гидросистеме при торможении не превосходят номинальных.  [c.142]


Упругая податливость механизмов промышленных роботов (ПР) в определенной мере влияет на статическую и динамическую точность позиционирования. Результаты теоретических исследований упругого манипулятора приведены в [1—4]. Актуальность экспериментальных исследований свойств упругой податливости отдельных механизмов и всей системы в целом значительно возрастает в связи с многократными нагружениями, имеющими часто характер статических и циклических нагружений в производственных условиях для роботов, выпускаемых серийно. Результаты исследований влияния упругой податливости на точность позиционирования могут быть использованы как в промышленных условиях применения серийно выпускаемых роботов, так и для проектирования их модификаций.  [c.88]

Из имеющихся литературных данных лишь немногие посвящены прямым методам определения прочности пластмасс при повышенных скоростях деформирования. Из сопоставления результатов экспериментального исследования однородных высокополимеров [68, 89—93] следует, что изменение прочности и предельной деформации может иметь сложный характер и зависит от структуры полимера, внешних условий, соотношения времен релаксации, продолжительности испытания и т. д. Проведенное нами исследование свойств полиэфирного связующего ПН- при сжатии, так же как и исследование фенолформальдегидной смолы в работе [67], показало увеличение прочности в 2,1 раза, модуля упругости в 2 раза (с 2,67-10 кгс/смР- до 5,41 10 кгс см ) при изменении скорости деформирования от 10 5 1 сек до 13 1 сек. В то же время предельные деформации при динамическом сжатии составили в среднем 4,6%, что значительно меньше полученных значений при медленных скоростях деформирования.  [c.48]

Важное значение приобретает совершенствование методов прогнозирования динамических качеств экипажной части, которые можно использовать на стадии проектирования для выбора наиболее рациональных характеристик. Такое прогнозирование в книге дается на основе данных исследования динамических свойств механико-математических моделей, включающих упруго-инерционные характеристики узлов экипажной части и верхнего строения пути как многомассовых систем с сосредоточенными или распределенными параметрами. Результаты обширных экспериментальных исследований послужили основой разработки рекомендаций по выбору характеристик и конструктивных решений тяговых приводов, рессорного подвешивания и других узлов экипажном части.  [c.3]

В экспериментальных исследованиях а низкомодульных оптически чувствительных материалах (полиуретановые резины, желатин и др.), вязкие свойства которых проявляются сильнее, указанные погрешности могут возрасти, и возможность решения упругой динамической задачи на таких мо-  [c.207]

Одним из важнейших свойств динамических моделей механических систем является их грубость [3]. Под этим понимается свойство модели не изменять суш ественно характера отображаемых ею динамических процессов при малых изменениях параметров модели. Используемая при динамических исследованиях реальной механической системы ее динамическая модель является одной из возможных, отличающихся от принятой иными значениями параметров. Причина многозначности параметров модели обусловлена процессом изготовления элементов механической системы, который всегда осуществляется с некоторыми малыми отклонениями от задаваемых значений, погрешностью расчетного и экспериментального определения упруго-инерционных и диссипативных параметров элементов, малыми изменениями некоторых характеристик системы (более всего диссипативных и возмущающих сил) в процессе ее движения.  [c.15]

Основой для написания книги явились лекции по сопротивлению материалов, читавшиеся авторами в течение нескольких лет на механико-математическом факультете Московского университета, причем реализовано второе направление развития сопротивления материалов. Не претендуя на полноту охвата, книга наряду с задачами о равновесии и устойчивости простейших элементов конструкций при упругих и упруго-пластических деформациях содержит также сведения о пластических течениях при обработке материалов давлением, о ползучести материалов, о динамическом сопротивлении, о колебаниях и о распространении упругих и пластических волн, о влиянии температуры, скорости деформации, радиоактивных облучений и т. п. на прочность и пластичность материалов. Дается описание экспериментальной техники, применяемой при исследовании механических свойств материалов.  [c.5]


Фактором, стимулирующим развитие теории и математических методов исследования смешанных динамических задач теории упругости, является значительный прогресс, достигнутый в изучении процессов распространения волновых полей в средах со сложными свойствами и в разработке соответствующих экспериментальных методов исследования, что нашло отражение в многочисленных монографиях как отечественных, так и зарубежных авторов [29, 33, 34, 44, 51, 54, 56, 57, 70, 89-90, 91, 108, 116, 121,  [c.3]

Кроме расчетов, было выполнено экспериментальное Исследование динамических свойств упругой системы и напряженности элементов преобразователя на машине. Измерения производились с помощью электротензометров. Результаты экспериментов свидетельствуют об удовлетворительном соответствии расчетных и фактических величин напряжений и частот собственных колебаний.  [c.155]

XIX век часто характеризуют как век, в котором главное внимание уделялось линейности, но при рассмотрении исследований, выполненных в каждом из его десяти десятилетий и в каждом из последующих семи XX века, всегда обнаруживаются усилия одного или большего числа экспериментаторов привлечь внимание к тому факту, что для всех серьезно изучавшихся твердых тел зависимость между напряжением и деформацией при малых деформациях была существенно нелинейной. Безапелляционные утверждения инженеров и атомистически ориентированных физиков о том, что квазистатические и динамические упругие свойства твердых тел при инфинитезимальных деформациях фундаментально линейны, вновь и вновь отделялись одно от другого последовательностью периодов успешных фундаментальных исследований нелинейных малых деформаций в механике сплошной среды — твердых деформируемых тел. Хотелось бы знать, означает ли экспериментальное изучение констант упругости третьего порядка начало нового, продолжительного, широкого понимания важности нелинейности при малых деформациях, или это будет еще одним случаем изолированного периода экспериментирования, который будет забыт в последующие десятилетия.  [c.212]

Эффект динамического упрочнения состоит в том, что чем больше скорость нагружения, тем меньше время протекания пластической деформации, а следовательно, выше напряжение, при котором происходит переход от упругой деформации к пластической. Экспериментальные исследования, проведенные Л. П. Орленко, показывают, что при увеличении скорости удара до 7,8 м/с динамический предел прочности стали интенсивно возрастает, при дальнейшем увеличении скорости (до 61 м/с) предел прочности изменяется незначительно. Свойства металлов при статическом и динамическом нагружениях различны. При том и другом нагружении в металлах появляется упругая, пластическая или упругопластическая деформация. Механические свойства металлов при любых условиях нагружения характеризует условная кривая напряжение — деформация, которая зависит от давления, скорости деформации и температуры. Кривая 0(e) динамического нагружения всегда расположена выше кривой статического нагружения (рис. 2). Предел упругости при однократном ударе не увеличивается, но значительно повышаются пределы текучести и  [c.15]

Как показывают экспериментальные и теоретические исследования, коэфициенты упругости грунтов зависят не только от упругих свойств грунта (модуля упругости и коэфи-циента Пуассона), но и от вида осадки фундамента. Установлено, что коэфициент упругости грунта, связывающий нормальное равномерное давление на грунт с равномерной вертикальной упругой осадкой фундамента, для одного и того же грунта будет иным, чем коэфициент, связывающий напряжение сдвига, действующее на грунт по основанию фундамента, с горизонтальным перемещением последнего. Коэфициент, связывающий внешний вращающий момент, действующий на фундамент, с упругим поворотом основания его, по величине также отличается от двух указанных коэфициентов. Поэтому при динамических расчётах массивных фундаментов машин пользуются тремя коэфициентами 1) —упругого равномерного сжатия грунта, 2) V — упругого сдвига и 3) — упругого не])авномерного сжатия грунта.  [c.536]

Ровно столетие прошло между пионерными исследованиями упругих свойств твердых тел, проведенных Вертгеймом в 40-х гг. XIX века, и кульминационными итоговыми работами Вернера Кестера 40-х гг. XX века. Кестер, который полагался главным образом на точные эксперименты по из-гибной вибрации, располагал преимуществом знания уточненной теории при установлении в своих исследованиях основных мод колебаний, для оценки значения почти пренебрежимого вклада инерции поворота сечений. Он определил значения Е для более чем тридцати элементов, сравнив их со значениями модулей одиннадцати соответствующих элементов, найденными Вертгеймом, а также значения модулей 59 двойных сплавов, сравнив их с соответствующими данными Вертгейма для 64 сплавов. Интересное различие по сравнению с результатами Вертгейма, особенно по отношению к сплавам, заключается в существенном увеличении объема побочной информации, относящейся к кристаллическим структурам и фазовым явлениям, которая позволила Кестеру классифицировать и привести в соответствие все его результаты, полученные на основе более точно изготовленных образцов и более точно определенных частот вибрации. В своих первых экспериментальных исследованиях зависимости модулей упругости от температуры Вертгейм ограничился квазистатическими испытаниями в интервале температур между —15 и 100°С, а также всего несколькими элементами динамические исследования Кестера охватывали большее множество твердых тел и диапазон температур от —185 до 1000°С. Оба рассматривали наличие корреляции между континуальными и атомистическими параметрами или отсутствие таковой, оба осредняли значения коэффициента Пуассона твердых тел, и где это было уместно, влияние магнитных эффектов  [c.492]


Для дальнейшего исследования вопроса о прочности рельсов представляет большой интерес экспериментальное изучение некоторых явлений. Мы полагаем, что экспериментальное исследование не должно ограничиваться наблюдениями над деформациями пути при прохождении поездов. Эти деформации представляют собой явление весьма сложное, а условия их наблюдения в пути далеко не благоприятны для обеспечения надлежащей точности работы. Нам кажется, что с пользой для дела некоторые элементарные явления могли бы быть подвергнуты экспериментальному исследованию в лабораторной обстановке, более благоприятной для точных наблюдений. Так мог бы быть изучен вопрос об общей деформации колесных скатов под действием приходящихся на них усилий. Большой интерес представляет вопрос о вдавливании колеса в рельс и связанных с этим явлением местных напряжениях. Эти напряжения могут оказывать влияние на износ рельса. Статические дефэрмации рельса и упругие свойства различных балластов также могут быть изучены в лабораторной обстановке. При изучении динамических напряжений особенно существенно записать вертикальные перемещения колеса. Для этой цели можно было бы воспользоваться прибором типа паллографа, служащего для записывания вибраций в корпусе судов.  [c.358]

Проведены экспериментальные исследования физических свойств двух титановых сплавов марок ВТ-5 и ВТ-8 модуль нормальной упругости (динамическим методом), внутреннее трение по затуханию свободных колебаний образца, теплопроводность, э тектросопротив-ление, число Лоренца (методом Егера — Диссельхорста), коэффициент линейного расширения (в вакуумном дилатометре), плотность и теплоемкость в интервале температур 20 4-4- 800° С.  [c.180]


Смотреть страницы где упоминается термин Экспериментальное исследование динамических упругих свойств : [c.61]    [c.537]    [c.140]    [c.247]   
Смотреть главы в:

Волны напряжения в твердых телах  -> Экспериментальное исследование динамических упругих свойств



ПОИСК



Динамическое исследование

Свойства динамические

Свойство упругости

Упругие свойства

Экспериментальное исследование

Экспериментальное исследование свойств РПИ



© 2025 Mash-xxl.info Реклама на сайте