Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приведение системы двух дифференциальных уравнений -го

На рис. 7.32-7.34 представлены результаты, полученные при решении системы обыкновенных дифференциальных уравнений на передней кромке пластины при г = = —1. На рис. 7.32 представлена зависимость коэффициента напряжения трения т от скорости вдува Р для значений д = 0 0,1 0,2 0,5 1 (кривые 1-5) на пластине с углом стреловидности передней кромки 45° (го = 1). Для случая обтекания холодной пластины = О (кривая 1) видно, что коэффициент напряжения трения т О при Р 1,1 для Р > 1,1 решения в рамках теории пограничного слоя нет. Это означает, что при указанных скоростях вдува, больших предельного, начинает развиваться область невязкого течения в окрестности поверхности пластины. Качественно аналогичный результат был получен в статье [Нейланд В. Я., 1972] при исследовании двумерного течения около плоской пластины, через поверхность которой вдувался газ. При сравнении полученных данных с результатами, приведенными в работе [Нейланд В. Я., 1972], необходимо отметить следующие два важных отличия. Во-первых, при обтекании треугольных пластин при любых > О даже в окрестности перед-  [c.350]


Такая система дифференциальных уравнений особенно часто встречается при исследовании динамической устойчивости стержневых конструкций, если поперечный прогиб стержня представить в виде разложения в ряд по формам свободных колебаний и сохранить в этом ряде лишь два первых члена. Определение параметров проводится по приведенной выше методике. Предположим, что Xi i) и %2 t) — стационарные случайные функции времени с известными корреляционными функциями W и взаимной  [c.215]

Полученная система состоит иа 6 дифференциальных уравнений, каждое из которых содержит лишь одну производную по одной из координат (г или i). Первые два уравнения системы служат для определения приведенного давления и скорости смеси в произвольный момент времени по известным полям остальных параметров остальные уравнения описывают законы изменения параметров лагранжевых частиц среды во времени.  [c.85]

Таким образом, общая задача трех тел, описываемая девятью дифференциальными уравнениями второго порядка, сводится к трем дифференциальным уравнениям второго порядка, т. е. порядок системы понижается от 18 до 6. Если задачу ограничить еще больше, потребовав, чтобы третье тело двигалось в плоскости орбит двух массивных тел, то останется только два уравнения второго порядка, так что система будет иметь четвертый порядок. Такой частный случай называется плоской ограниченной круговой задачей трех тел. Из приведенных выше рассуждений становится понятным, почему пространственной и плоской ограниченной круговой задаче трех тел было посвящено большое число аналитических и численных исследований, хотя при такой постановке задачи мы волей-неволей лишаем себя воз.можности использовать десять известных интегралов движения. Однако при этом можно найти новый интеграл (впервые полученный Якоби), который будет полезен при исследовании поведения малой частицы.  [c.146]

Таким образом, метод интегральных соотношений как разновидность проекционных методов решения уравнений в частных производных является обобщением метода прямых и инженерного метода сосредоточенных параметров. Решение разбивается на два этапа. Первый этап состоит в сведении точной системы уравнений в частных производных к аппроксимирующей системе обыкновенных дифференциальных уравнений. На втором этапе проводится численное решение этой аппроксимирующей системы каким-либо из стандартных методов (обычно методом Рунге—Кутта). При этом приведение системы обыкно1венных дифференциальных уравнений типа (7-46) к канонической форме может быть легко осуществлено непосредственно программой.  [c.96]


В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

При изучении динамических процессов в машинах необходим учет инерционных, упругих и диссипативных свойств материалов. Известны два способа учета этих свойств, используемых при составлении расчетных моделей (см. 5 гл. 1). При первом способе учитывают непрерывное (континуальное) распределение перечисленных свойств. При этом в математические модели, отображающие динамические процессы, включаются дифференциальные уравнения в частных производных, теория которых составляет предмет изучения математической физики. При втором способе предполагают, что свойства материалов отображаются дискретно, т. е. имеют точки или сечения концентрации. При этом количество свобод движения системы считают конечным. Математические модели таких систем содержат обыкновенные дифференциальные уравнения. Для составления динамических моделей, являющихся основанием для составления дифференциальных уравнений, необходимо определить приведенные параметры, отображающие свойства материалов. При предположении о дискретном распределении свойств материалов принимают следующие допущения тела или звенья, наделенные сосредоточенной массой, лищены упругости упругие или упругодиссипативные связи лищены массы. Приведение реальных мащин и мащин-ных агрегатов к условным расчетным схемам неизбежно дает  [c.98]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]


В этом параграфе рассмотрим задачу об устойчивости неподвижных точек точечного отображения, задаваемого гамильтоновыми дифференциальными уравнениями. Будут рассмотрены случаи, когда величины Лг связаны резонансными соотношениями третьего и четвертого порядков. Будут доказаны два утверждения о неустойчивости. Их доказательство основано на приведении точечного отображения в окрестности неподвижной точки (которую считаем совпадающей с началом координат) к нормальной форме с последующим применением теоремы 2 о неустойчивости неподвижной точки отображения. По аналогичной схеме исследована устойчивость положений равновесия гамильтоновой системы с одной и двумя степенями свободы в работах автора [53, 55, 60] и автономной гамильтоновой системы с произвольным числом степеней свободы в работе Хазина [92]. Теоремы о неустойчивости, полу-  [c.117]


Смотреть страницы где упоминается термин Приведение системы двух дифференциальных уравнений -го : [c.97]   
Смотреть главы в:

Автоколебания в компрессорах Издание 2  -> Приведение системы двух дифференциальных уравнений -го



ПОИСК



I приведения

Дифференциальные системы

Приведение системы сил

Приведение системы уравнений равновесия к двум дифференциальным уравнениям второго порядка

Система двух сил

Система дифференциальных уравнений



© 2025 Mash-xxl.info Реклама на сайте