Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам Коррозионная стойкость

Поскольку жаропрочность различных сплавов в определенной области температур может быть почти одинаковой, при выборе того или другого сплава для работы при высоких температурах часто руководствуются другими характеристиками. Наиболее хрупким, трудным в технологическом отношении является вольфрам, поэтому сплавы на его основе применяют обычно при рабочих температурах, превышающих 2000°С в условиях сильного эрозионного износа. Сплавы на основе тантала являются наиболее дорогими и поэтому в интервале температур 1000—1500°С используют преимущественно сплавы на основе ниобия и молибдена. Наиболее жаропрочны сплавы молибдена. Их применяют при температурах выше 1200°С и иногда до 2000 С. Выбор молибденового или ниобиевого сплава определяется требованиями пластичности, свариваемости, коррозионной стойкости и т. д.  [c.530]


Вольфрам — один из наиболее коррозионностойких металлов. Практически почти все сказанное о коррозионной стойкости молибдена применимо и к вольфраму  [c.50]

Молибден (как и вольфрам) устойчив в фосфорной кислоте. Поэтому легирование танталом молибдена не влияет на коррозионную стойкость. Сплавы для эксплуатации в соляной кислоте можно выбрать на основании данных, приведенных в табл. 15. В кипящей соляной кислоте с концентрацией до 20% можно эксплуатировать нелегированный ниобий, а при более высокой концентрации кислоты — сплав ниобия с танталом (80- 70 мас.%) Nb + (20- 30 мас.%) Та. Можно применять также сплав Та+ 25 мас.% Ti и Та + 60 мас.% V. Экономически целесообразно легировать ниобий титаном и, возможно, ванадием. При этом, однако, коррозионная стойкость ниобия ухудшается. Сплав на основе ниобия с 10 мас.% Ti (5 мас.% V) имеет коррозионную стойкость на уровне 1 балла в 13-14%-ной НС1, а при 15 мас.% Ti (10 мас.% V) - в 11-13%-ной НС1.  [c.83]

Кроме обычных углеродистых сталей, которые подвергаются обезуглероживанию, все исследованные жаростойкие материалы довольно хорощо противостояли воздействию чистого натрия или натрий-калиевого сплава. Таким образом, титан, цирконий, ниобий, тантал, молибден, вольфрам, легированные стали, никель и сплавы на никелевой основе можно уверенно использовать в качестве конструкционных материалов в контакте с натрием при температуре около 800° С. Чистые сварочные швы, выполненные на обычном оборудовании для аргоно-дуговой сварки, стойки в этих условиях так же, как и основной металл. Обработка поверхности оборудования в данном случае повышает его коррозионную стойкость незначительно.  [c.319]

Хром, ванадий и вольфрам повышают жаростойкость, теплоустойчивость и коррозионную стойкость изделий (табл. 17). Цирконий также повышает жаростойкость и теплоустойчивость. Интенсифицирует процесс кристаллизации, увеличивает сопротивление коррозии.  [c.50]

С. Молибден имеет высокую коррозионную стойкость против атмосферной коррозии. Однако он так же, как и вольфрам, сильно окисляется и без специальных покрытий не может работать при высоких температурах в воздушной атмосфере.  [c.257]

Легирующие компоненты предназначены для улучшения механических характеристик металла шва, придания ему жаро- и износостойкости, коррозионной стойкости и других свойств. Легирующими элементами служат хром, марганец, титан, ванадий, молибден, никель, вольфрам и др. Легируюш ие элементы вводят в покрытие в виде ферросплавов и чистых металлов.  [c.59]


Ниобий, вольфрам и ванадий относятся к тугоплавким металлам, обладающим высокой коррозионной стойкостью в некоторых средах, прочностью при повышенных температурах, при которых уже не работают железо, никель и сплавы на их основе.  [c.144]

Основным недостатком хромоникельмолибденовых сталей является их низкая стойкость в окислительных средах. Для придания хромистым и хромоникелевым сталям высоких прочностных характеристик их дополнительно легируют вольфрамом. Кроме улучшения механических свойств вольфрам, подобно молибдену, увеличивает коррозионную стойкость сталей, однако его действие оказывается не столь эффективным.  [c.189]

Кроме хрома, в стали вводят никель, марганец, углерод, молибден, вольфрам, ниобий и другие элементы для придания им специальных свойств (повышенной коррозионной стойкости в агрессивных средах, более высоких механических свойств при высоких температурах, определенных физических свойств) и структуры.  [c.10]

В рассматриваемых условиях очень высокой коррозионной стойкостью обладают никель, молибден и, возможно, вольфрам. Интересно отметить, что скорость растворения хрома здесь почти на два порядка выше, чем железа.  [c.27]

Вольфрам при 960° С обладает высокой коррозионной стойкостью. При 1200° корродирует легко. Скорость коррозии того же порядка, что и в атмосфере кислорода.  [c.212]

В холодной 25% НС сплав титана с 15% молибдена в 5 раз устойчивее титана. Легирование титана хромом не повышает его коррозионной стойкости в соляной кислоте. Сплавы титана с 0,1— 0,2% палладия, или с 35% ниобия, или с 20% молибдена по коррозионной стойкости в 18%-ном растворе соляной кислоты, содержащей хлор, при-90° С не имеют особых преимуществ перед титаном. При этом сплавы, содержащие 35% ниобия или 20% молибдена, показывают меньшую стойкость, чем чистый титан (табл. 2.4) Молибден и вольфрам при температуре ниже 100° С стойки в широком диапазоне концентраций кислоты. "При 100—110° С разрушение их протекает с заметной скоростью  [c.99]

Коррозионную стойкость циркония в воде и водяном паре резко ухудшают не только азот и углерод, но несколько менее интенсивно титан при содержании более 0,008% и алюминий при содержании более 0,01%. Кислород при содержании, не превышающем 0,5%, мало влияет на коррозионную стойкость циркония в этих средах, а гафний, медь и вольфрам при обычном их содержании не оказывают вредного влияния.  [c.437]

Наиболее эффективной в повышении коррозионной стойкости является добавка молибдена. Вольфрам также повышает коррозионную стойкость сплава, но несколько меньше, чем молибден. Ванадий оказывает наиболее слабое влияние на повышение коррозионной стойкости сплава в растворах серной кислоты.  [c.50]

Для снижения переходного сопротивления и улучшения коррозионной стойкости контакты, применяемые в радиоэлектронике, покрывают благородными металлами. Однако золотые и серебряные покрытия недостаточно износостойки, поэтому целесообразнее применять покрытия из сплавов, которые к тому же дешевле покрытий чистыми металлами. В табл. 25 и 26 приведены результаты исследования износостойкости и переходное сопротивление покрытий из сплавов золота, серебра, белой бронзы и вольфрам-кобальта [182].  [c.68]

Легирующие вещества (марганец, хром, молибден, вольфрам, титан, бор, ниобий, никель, кремний и другие) вводят в электродное покрытие для получения повышенной прочности, коррозионной стойкости, износостойкости и других специальных свойств металла шва. Легирование осуществляется также и через электродную проволоку.  [c.53]

Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, М, И и О. После деформации ниже температуры рекристаллизации (1100—1300°С) порог хладноломкости молибдена и вольфрама понижается. Ниобий и тантал, в отличие от вольфрама и молибдена,—металлы с хорошей пластичностью и свариваемостью. Следует указать, что ниобий обладает более низким порогом хладноломкости и менее чувствителен к примесям внедрения. Указанные металлы обладают высокой коррозионной стойкостью, в том числе в кислотах и щелочах.  [c.351]


Воздух, растворимость в воде 1181—1182 Вольфрам, коррозионная стойкость в различных средах 379—380 коррозия в атмосфере 383 Воск пчелиный, действие на сплавы магния 164 Выносливость коррозионная см. Коррозионная выносливость Выпариватели из свинца 322 Выпрямители силовые, коррозия под действием охлаладающей воды 513—514  [c.1228]

Контакты на вольфрамовой основе. Вольфрам обеспечивает твердость, теплостойкость, стойкость при искрении, коррозионную стойкость и несвариваемость. Компонентом, обеспечивающим высокую электропроводность и теплопроводность, является Ag (10—40%) или Си (10—40%). Применяются также вольфрамомедноникелевые контакты (до 20% Си и Ni).  [c.600]

Легированной называется сталь с присадками различных химических элементов, придаюш,их стали повышенные механические и другие свойства жаростойкости, коррозионной стойкости. В качестве легирующих элементов чаще всего применяются хром (X), никель (Н), вольфрам (В), ванадий (Ф), молибден (М).  [c.240]

В общем, можно сказать, что тантал по коррозийной стойкости превос- ходит все остальные металлы. Он практически абсолютно стоек в большинстве активных коррозионных сред и технологичен. Единственным, однако очень существенным, препятствием для широкого применения тантала является его высокая стоимость, примерно равная 0,2—0,3 стоимости золота. Молибден и вольфрам во многих (хотя далеко не всех) средах абсолютно стойки, т.е. в этих средах они имеют такую же коррозионную стойкость,  [c.47]

Возникновение пассивного состояния определяется природой металла и составом агрессивной среды. К легко пассивирующимся металлам следует отнести, в первую очередь, хром, никель, алюминий, титан, вольфрам и др. Коррозионная стойкость нержавеющей стали обусловлена формированием на ее поверхности пассивных пленок при наличии в стали хрома.  [c.20]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Контакты на вольфрамовой основе. Вольфрам обеспечивает твёрдость, теплоустойчивость, устойчивость при искрении, коррозионную стойкость и несвариваемость. Компонентом, обеспечивающим высокую электропро-  [c.271]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Основным толчком для развития спроса на материалы, способные работать при более высоких температурах и напряжениях и имеющие более высокую коррозионную стойкость, явилось создание газовых турбин и ракетных двигателей. Однако дальнейшее повышение эффективности многих промышленных процессов, в частности в нефтяной и химической промышленности, также зависит главным образом от успехов в разработке улучшенных высокотемпературных крипоустойчивых сплавов. Вольфрам, несомненно, играет важную роль в производстве новых сплавов, необходимых для каркасов самолетов и в качестве конструкционного материала для ракет.  [c.161]

Тантал. Сплавы на основе тантала также технологичны и перспективны как высокопрочные материалы, однако их раз- I работка сдерживается высокими стоимостью и плотностью, а i также дефицитностью. Твердорастворное упрочнение тантала элементами замеш,ения в основном носит такой же характер, как и в сплавах ниобия. Так как вольфрам оказывает более i сильное упрочняюш,ее воздействие, чем молибден, то во все сплавы тантала добавляют 7-10 % W. Сплавы Т-111 I (рис. 19.7) и Т-222 представляют собой легированные гаф- нием модификации сплава Ta-lOW (с углеродом), имеюш,ие приблизительно такую же технологичность. Для эксплуатации >482 °С в окислительной среде танталовые сплавы нуждаются в заш,итном покрытии. Широкое распространение тантал получил в качестве материала для конденсаторов, а в силу высокой коррозионной стойкости в кислотах и других химических реагентах его применяют в соответствуюш,их областях промышленного производства.  [c.312]

Никельхромомолибденовый сплав типа хастелой С — сплав с никелевой основой, кроме молибдена, содержит хром, вольфрам и железо. Наличие хрома снижает его коррозионную стойкость  [c.617]

Поскольку коррозионную стойкость сталей связывают с карб идны ми реакциями очевидно что содержание углерода и его термодинами. ческая активность в аустените определяют склонность сталей к МКК Элементы повышающие активность углерода (никель, кобальт крем нии) способствуют развитию МКК Элементы, снижающие активность углерода (марганец, молибден, вольфрам, ванадий, ниобий), препятст вуют развитию МКК  [c.267]


Водородная деполяризация 36 Вольфрам 303 коррозионная стойкость 304-применение 305 Вольфрамовые аноды 305 Вторичная пассивность 59 Высокохромистые стали 119 новыщенной чистоты по примесям внедрения 160 Гафний 257 Деполяризация водородная 33 кислородная 37 Дифференциальная аэрация 281 Диффузионный контроль 40 Дуралюмин 267 Железо влияние углерода 140 коррозионная стойкость в кислотах неорганических 137,  [c.355]

Хорошей коррозионной стойкостью в случае Ga обладает только вольфрам. Инконел1. имеет ограниченную коррозионную стойкость в случае РЬ. Графит имеет хорошую коррозионную стойкость в слу чае Na и плохую — в случае К.  [c.544]

К элементам первой группы относятся благородные металлы с низким перенапряжением водорода платина, палладий, а также, как показали опыты Стерна и Виссенберга, рутений, родий, иридий, ссмий [5]. К элементам второй грешны относится молибден, а также, вероятно, вольфрам, кроме того, к этой группе можно отнести и никель, который, как было показано в [4], повышает коррозионную стойкость титана. К третьей группе люжно отнести 144  [c.184]

Высокой коррозионной стойкостью Б растворах едкого натра обладают вольфрам, золото, кобальт, магний, молибден, никель и его сплавы, серебро, платина, цирконий. Совершенно нестойки алюминий и его сплавы. Железо и углеродистые стали в разбавленных холодных растворах едкого натра пассивируются. С повышением концентрации и температуры щелочи стойкость их заметно снижается, что связано с усилением растворимости образующихся продуктов коррозии — ферритов и ферратов. В горячих ( 90° С) растворах, содержащих от 15 до 43% NaOH, углеродистая сталь в напряженном состоянии подвергается коррозионному растрескиванию. В присутствии окислителей опасная область концентраций расширяется [35а]. Легирование стали хромом, никелем, молибденом способствует повышению ее стойкости — расширяются области температур и концентраций едкого натра, в которых сталь сохраняет устойчивое пассивное состояние. Сталь Х18Н10Т в растворах, содержащих 320—340 г/л NaOH, до 160° С корродирует СО скоростью не более 0,05 мм/еод.  [c.70]

Легированной называют сталь, в которой наряду с обычными примесями содержатся специально вводимые легирующие элементы хром, ванадий, кобальт, вольфрам, молибден, титан и др. Легирующие элементы определяют название легированной стали, например хромистая, никелевая, ванадиевая, хромоникелевая, хромомарганцевомолибденовая и т. п. Легирование стали специальными элементами значительно повышает механические, технологические и другие свойства стали. Детали машин и изделия, сделанные из легированной стали, долговечнее, обладают большей прочностью, коррозионной стойкостью и др.  [c.102]

Для электроосаждения сплава хром — вольфрам с 33% рекомендован [223] раствор, содержащий в 1 л 2-м. СгОз 0,43-м. У Оз 1,23-м. (ЫН4)зСбН507 и 0,02-м. Н2504. При плотности тока 23 а/дм , температуре 70° и pH = 8,0 осаждается с низким выходом по току (0,05%) покрытие, имеющее красивый внешний вид и высокую коррозионную стойкость даже в тонких слоях.  [c.61]

Легирующие вещества ((хром, иикель, моли бден, марганец, титан, вольфрам) придают металлу повышенную прочность, износоустойчивость, коррозионную стойкость, жаро стой1ко1сть.  [c.92]

За последние годы все более широкое применение находят сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово — цинк, кадмий — цинк, олово — кадмий и др.), антифрикционных свойств (олово — свинец, свинец—цинк, серебро — кадмцй, олово — свинец — сурьма и др.), высоких декоративных свойств (медь — золото, золото — серебро, никель — олово, медь — олово и др.), магнитных свойств (никель— кобальт, вольфрам — кобальт, никель — железо ц др.), специальных свойств, например сцепление с резиной (медь — цинк), как подслой под окраску (железо — цинк), для пайки (олово — свинец) и т. п.  [c.194]

В связи с широким развитием техники требуются покрытия с новыми специфическими свойствами, которылш зачастую электроосажденные слои отдельных металлов не обладают. За последние годы находят все более широкое применение сплавы, получаемые электролитическим путем. Они предназначаются для придания поверхности изделия высокой коррозионной стойкости (сплавы олово-цинк, олово-свинец, кад5лий-цинк, олово-кадмий и др.), антифрикционных свойств (сплавы олово-свинец, свинец-цинк, серебро-кадмий, олово-свинец-сурьма, и др.), высоких декоративных свойств (сплавы медь-золото, золото-серебро, никель-олово, медь-олово и др.), магнитных свойств (сплавы никель-кобальт, вольфрам-кобальт, никель-железо и др.), специальных  [c.208]

Жаропрочные стали в ряде случаев должны обладать также и коррозионной стойкостью (сопротивление воздействию внешней среды, часто в сочетании с рабочими напряжениями). Для придания более высокой жаропрочности в аустенитные стали часто вводятся элементы-упрочнптели вольфрам, молибден, ниобпй и др.  [c.93]

В качестве дополнительных легирующих элементов в коррозионностойких сталях и сплавах используют кремний, алюминий, молибден, вольфрам, ванадий, титан, ниобий (ферритообразующие элементы), а также азот, марганец, медь, кобальт (аустенитооб-разующие) в различных сочетаниях и количествах, обусловленных требованиями к коррозионной стойкости, механическим и технологическим свойствам.  [c.8]

Сг, дополнительно легированные такими элементами, как никель, молибден, ванадий, вольфрам, ниобий, что обеспечивает получение более высоких механических свойств при повышенных температурах. Стали подобного типа имеют преимущества перед сталями X13 без дополнительного легирования и в отношении коррозионной стойкости. Стали этого типа отличаются достаточно высокими значениями ударной вязкости. Ниже кратко рассматривается влияние отдельных легирующих элементов на свойства стали 1X13 [69—71].  [c.74]


Смотреть страницы где упоминается термин Вольфрам Коррозионная стойкость : [c.376]    [c.60]    [c.559]    [c.27]    [c.330]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.409 ]



ПОИСК



Вольфрам

Вольфрам коррозионная стойкость 304применение

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте