Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядра и ядерные силы

Электрическое поле ядра и ядерные силы  [c.131]

СТАБИЛЬНЫЕ ЯДРА И ЯДЕРНЫЕ СИЛЫ  [c.28]

П4.1. Ядра и ядерные силы  [c.487]

Силы притяжения, связывающие протоны и нейтроны в атомном ядре, назвали ядерными силами. Другое название этого взаимодействия — сильное взаимодействие.  [c.318]

Во-первых, известно, что между нуклонами в ядре действуют ядерные силы < 0), благодаря чему и возможно существо-  [c.140]


Радиоактивный а-распад нашел свое объяснение в туннельном эффекте. Потенциальная энергия положительно заряженной а-частицы в поле положительно заряженного ядра является положительной и возрастает обратно пропорционально расстоянию от ядра при уменьшении этого расстояния (рис. 62). Если бы, кроме сил кулоновского отталкивания, никаких других сил не существовало, то частица не смогла бы удержаться в ядре. Однако при некотором малом расстоянии в действие вступают большие ядерные силы притяжения, которые удерживают а-частицу в ядре. Эти ядерные силы притяжения резко уменьшают потенциальную энергию (притяжение ), в результате чего в области, имеющей размеры ядра, для а-частицы образуется потенциальная яма, которая от внешнего пространства отделена потенциальным барьером. По классической механике, покинуть ядро могут только те а-частицы, энергия которых больше высоты потенциальною барьера. Однако эксперименты по бомбардировке ядер показывают, что энергия а-частиц, вылетающих из ядра, меньше высоты потенциального барьера. Следовательно, а-частицы, вылетающие из ядра, проникают через потенциальный барьер посредством туннельного эффекта.  [c.184]

Немало споров вызывал у нас порядок изложения материала. Было ясно, что не следует начинать с традиционной радиоактивности, потому что понять механизм радиоактивности можно только уже понимая, как устроено само ядро. Поэтому мы начали со структуры ядра, ядерных моделей, ядерных реакций и ядерных сил, а уже после этого рассказали о явлениях радиоактивного распада и элементарных частицах.  [c.6]

Заметим, что ни а, ни V не испытывают резкого скачка на границе ядра, поскольку ядерные силы, которыми в сущности и определяются V и а, обладают конечным радиусом действия. Следует также иметь в виду, что граница ядра не может считаться резкой благодаря наличию нулевых колебаний ядерных частиц и конечности радиуса действия ядер-ных сил. Вне узкого пограничного слоя, который мы назовём областью диффузности ядерной границы, потенциал V—/<з можно не учитывать.  [c.172]

Стабильные и нестабильные ядра. Не всякое атомное ядро, состоящее из протонов и нейтронов, удерживаемых ядерными силами притяжения, может существовать неограниченно долго. Многие атомные ядра оказываются способными к самопроизвольным превращениям в другие атомные ядра. Устойчивыми являются лишь те атомные ядра, которые обладают минимальным запасом полной энергии среди всех ядер, в которые данное ядро могло бы самопроизвольно превратиться.  [c.321]


Примером сильного взаимодействия могут служить ядерные силы, связывающие в атомных ядрах протоны и нейтроны. Слабое взаимодействие обнаруживается в процессах, связанных с испусканием или поглощением нейтрино.  [c.336]

Ядерные силы. При исследовании строения атомных ядер является важным не только вопрос, из каких частиц построено ядро, но также и вопрос о характере взаимодействия структурных частиц ядра, о том, какие силы действуют между ядерными частицами (нуклонами). Большое значение имеет тщательный анализ экспериментально установленных свойств ядер и опытных данных  [c.8]

Для вычисления энергии связи, численно равной работе разделения ядра на отдельные нуклоны и удаления последних друг от друга на такие расстояния, на которых они не взаимодействуют, необходимо было бы знание закона действия ядерных сил. Однако применение закона сохранения энергии позволяет обойти данное затруднение и вычислить энергию связи ядра. Покажем это.  [c.92]

Важнейшим свойством ядерных сил также является зависимость их величины от взаимной ориентации спина и орбитального момента движения каждого нуклона, т. е. спин-орбитальный характер. Спин-орбитальное взаимодействие играет значительную роль в ядрах и составляет примерно 10% от общей энергии взаимодействия. Учет спин-орбитальной связи достаточно правильно передает эмпирическую последовательность энергетических уровней и значения магических чисел (см. 31).  [c.136]

Исследуя рассеяние а-частиц, испускаемых (Th ) и обладающих начальной энергией 8,8 Мэе, на ядрах урана, Резерфорд в 1927 г, установил, что рассеяние а-частиц происходило так же, как и от кулоновского силового центра, и что а-частицы не вступают в область действия ядерных сил. Это означает, что ядро урана окру-  [c.228]

Иное положение мы имеем при взаимодействии падающей частицы с ядром. Атомное ядро представляет собой плотно упакованную структуру нуклонов. Вследствие этого налетающая частица (нуклон), приблизившаяся к ядру на расстояние, равное радиусу действия ядерных сил, вступает в сильное взаимодействие с ближайшими нуклонами ядра и быстро передает им свою энергию. Передав свою энергию, сама влетевшая частица оказывается не в состоянии вылететь из ядра. Образуется ядро, отличающееся от исходного тем, что к нему присоединилась еще одна дополнительная частица (нуклон, а-частица или дру ое легкое ядро) и привнесена энергия этой частицей. Возникшее ядро называется составным или промежуточным ядром. Это новое ядро находится в возбужденном состоянии, привнесенная энергия возбуждения распределена между многими нуклонами ядра. Возбужденное составное ядро может освободиться от избытка энергии или путем выбрасывания частицы, или путем испускания у-фотона.  [c.274]

Следует иметь в виду, что кинетическая энергия осколков So не может быть сколько угодно малой и ею, вообще говоря, нельзя пренебрегать, как мы сделали в (111.22). В самом деле, если ядро разделилось иа две части, то, следовательно, эти части раздвинулись на расстояние, превышающее радиус действия ядерных сил (рис. 91). Можно принять, что в этот момент кинетическая энергия осколков равна нулю. Но поскольку осколки заряжены, то они будут отталкиваться под действием кулоновских сил и, разлетаясь на большое расстояние, приобретут кинетическую энергию So-  [c.294]

Энергия относительного движения ядер может быть увеличена путем повышения температуры. Поэтому повышение температуры приводит к быстрому возрастанию вероятности туннельного сближения ядер Ai и Л2. Сущность ядерных реакций слияния в том и состоит, что оголенные атомные ядра за счет своей кинетической энергии при столкновении преодолевают потенциальный барьер и подходят друг к другу на такое близкое расстояние что под действием ядерных сил сцепления они сливаются в единую систему — новое, более сложное ядро. Поскольку необходимая для слияния ядер кинетическая энергия подводится к ним как тепловая энергия, то такие ядерные реакции и называются термоядерными реакциями слияния (синтеза).  [c.325]

Рассмотренными характеристиками элементарных частиц можно было бы ограничиться там, где имеется только электромагнитное взаимодействие, например взаимодействие электрона в атоме. При исследовании поведения нуклонов в ядре основную роль играют ядерные силы (сильное взаимодействие). Спонтанный распад частиц, процессы р-распада обусловливаются не сильным и не электромагнитным взаимодействиями (за небольшим исключением), а слабым взаимодействием. Поэтому для выражения свойств и поведения элементарных частиц относительно сильного и слабого  [c.344]


Третья часть книги посвящена ядерным силам и элементарным частицам. Здесь рассмотрены опыты по нуклон-нуклонным рассеяниям и свойства ядерных сил рассеяние быстрых электронов на ядрах и протоне и структура нуклонов свойства х- и я-мезонов и вопрос об изотопической инвариантности ядерных взаимодействий свойства и систематика странных частиц получение и свойства антинуклонов и других античастиц и свойства нейтрино и антинейтрино цикл вопросов, связанных со свойствами слабого взаимодействия, и, наконец, вопрос о квазичастицах (резонансах).  [c.12]

Из пропорциональности AW и А следует свойство насыщения ядерных сил, т. е. способность нуклона к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными (А — 1) нуклонами, то суммарная энергия связи была бы пропорциональна А А — 1) == Л , а не Л.  [c.37]

Спины нейтрона и протона ib ядре дейтона не компенсируются, а складываются нейтрон и протон могут образовать связанную систему — дейтон—только при одинаковом направлении своих спинов . Ядра, состоящего. из нейтрона и протона с противоположно направленными спинами, не существует. Этот результат является следствием спиновой зависимости ядерных сил (подробнее см. 70, я. 2).  [c.84]

Квадрупольный момент является важной характеристикой атомного ядра. Он позволяет получить дополнительные сведения об устройстве ядра и характере ядерных сил.  [c.97]

Благодаря действию ядерных сил две частицы (два ядра или ядро и нуклон) при сближении до расстояний порядка см вступают между собой в интенсивное ядерное взаимодействие, приводящее к преобразованию ядра. Этот процесс называется ядерной реакцией. Во время ядерной реакции происходит перераспределение энергии и импульса обеих частиц, которое приводит к образованию нескольких других частиц, вылетающих из места взаимодействия.  [c.257]

Взаимодействия нейтронов с ядрами составляют, пожалуй, самый обширный и разнообразный класс ядерных взаимодействий. Объясняется это тем, что нейтроны (наряду с протонами) входят в состав любого атомного ядра, в котором они прочно связаны ядерными силами. Поэтому при сближении с ядром нейтроны должны с ним эффективно взаимодействовать, причем в отличие от протонов, которые из-за кулоновского барьера не могут эффективно взаимодействовать с ядром при малых энергиях, нейтроны, не имеющие заряда, взаимодействуют с ядром и при низких энергиях.  [c.283]

В отличие от рассмотренного выше механизма протекания ядерной реакции с образованием промежуточного ядра в процессе Оппенгеймера — Филлипса дейтон вообще не попадает в атомное ядро, а, приблизившись к нему, поляризуется большими электрическими силами, действующими между ядром и входящим в состав дейтона протоном. При этом если высота кулоновского барьера ядра заметно превышает энергию связи дейтона [Вк > то  [c.459]

Другой типичной реакцией прямого взаимодействия является реакция срыва, которая наблюдается при нецентральных соударениях дейтона с ядром. При этом из-за большого расстояния между нуклонами в дейтоне они могут оказаться в разных условиях один из нуклонов может попасть в зону действия ядерных сил и будет захвачен ядром, тогда как другой будет находиться вне зоны действия ядерных сил и, следовательно, пролетит мимо ядра.  [c.470]

В П4.1 помеш ены сведения о стабильных атомных ядрах и ядерных силах. Рассматриваются вопросы энергетического расш епления ядра, описываются некоторые ядерные модели, спин ядра и его магнитный момент. Приводится статистика коллектива частиц и понятие четности волновой функции. Обсуждаются основные особенности ядерных сил и мезонной теории этих сил.  [c.486]

Решение задачи устойчивости атома непосредственно связано с принятой моделью его строения [20], Наиболее привлекательной в этой связи явилась ядерная модель, в соответствии с которой вся масса атома сосредоточена в малом ядре. В этом объеме заключен и положительный заряд атома. Вокруг ядра движутся легкие, отрицательно заряженные электроны атом при этом вцелом остается электрически нейтральным. Динамическая устойчивость атома в этой модели обеспечивается равновесием между кудоновской силой притяжения электронов к ядру и центральной силой, возникающей при обращении электрона вокруг ядра.  [c.58]

ПОЛЯРИЗАЦИЯ МЕДЛЕННЫХ НЕЙТРОНОВ получается либо при взаимодействии нейтрона с ядром, обусловленном ядерными силами, лпбо нри магнитном взаимодействии нейтрона с атомом, обусловленном взаимодействием их магнитных моментов. Величина сечения взаимодействия зависит от взаимной ориентации векторов магнитных моментов нейтрона и атома, что может приводить к пространств, разделению нейтронов с противоположной ориентацией магнпт-ных моментов и, следовательно, спинов, т. е. к созданию поляризованных пучков псштронов [1]. Об основах теории магнитного взаимодействия нейтронов с атомами см. [2].  [c.146]

Существование мезонов как частиц (квантов ядерного поля), осуществляющих сильное (ядерное) взаимодействие между нуклонами, в атомном ядре было предсказано теоретически в 1935 г. японским физиком X. Юкава. Используя соотношение неопреде-ленностн (Ato-A //, где A( -=/n ,— собственная энергия мезона) и данные о радиусе действия ядерных сил R 1,5-Юкава оценил ориентировочно массу мезонов — носителей ядерного взаимодействия. Радиус действия ядерных сил R= -At,  [c.75]

Электрическое поле ядра (а такж и действие ядерных сил) может быть исследовано путем изучения рассеяния заряженных частиц. Исторически первыми исследованиями в этом направлении, как отмечалось в Л и 13, были исследования рассеяния а-частиц на атомных ядрах. Экспериментальные исследования, проведенные  [c.131]


Свойство насыщения ядерных сил приводит к тому, что энергия связи в ядре в первом приближении пропорциональна числу нуклонов. Оно проявляется также и в том, что плотность ядерного вещества примерно одинакова для различных ядер, так как объем ядра V оказывается пропорциональным А. Таким образом, можно было бы рассматривать ядра состоящими из некоторого ядерного вещества или высококонденсирован)юй нуклопной жидкости , заполняющей объем ядра с постоянной плотностью. Это дает основание уподобить атомное ядро капле нуклонной жидкости (см. 29).  [c.135]

Атомные ядра представляют сложные квантовомеханические системы, построенные из двух сортов строительных кирпичей из протонов и нейтронов. Протоны и нейтроны в ядре связываются внутренними силами ядерного взаимодействия, между протонами существует также электромагнитное взаимодействие. Над выяснением устройств ядра из этих первокирпичиков и законов ядерного взаимодействия упорно работают физики начиная с 1932 г. Возникшие при этом трудности можно свести к следующему.  [c.170]

Благодаря свойству насыщения ядерных сил распределение протонов и нейтронов внутри ядра должно быть примерно одинаковым. Это значит, что и распределение электрического заряда внутри ядра должно быть таким же, т. е. уменьшаться с уменьшением плотности заряда в поверхностном слое. На рисунке 53 кривая выражает распределение электрического заряда в ядре-каиле.  [c.173]

Эксиеримеитальиые исследоваиия более поздних лет показывают, что из тяжелых ядер, находящихся в сильно возбужденных состояниях, могут вылетать протоны, нейтроны и а-частицы. Экспериментальные данные и современные теоретические представления о ядерных силах нельзя совместить с предположением о длительном существовании а-частиц внутри атомного ядра как индивидуально обособленных образований.  [c.176]

Относительно первого этапа распада в наше время почти ничего не известно -достоверно и имеются лишь общие качественные рассуждения. Образование а-частичной группы из двух протонов и двух нейтронов происходит в кдерной материи, по-видимому, в самом процессе а-распада. Обособлению этой группы нуклонов, вероятно, способствует насыщение ядерных сил (каждый нуклон взаимодействует лишь с ограниченным числом ближайших к нему нуклонов, 22), так что образовавшаяся а-частица подвержена меньшему действию ядерных сил, и вместе с тем большему действию кулонов-ского отталкивания от протонов ядра, чем отдельные нуклоны. По-видимому, этим и объясняется самопроизвольный вылет а-частицы из ядра. Были предприняты многочисленные попытки рассмотреть процесс формирования а-частицы в ядре, были выдвинуты различные модели этого процесса, однако существенных результатов они пока не дали.  [c.228]

В 1947 г. английские ученые С. Поуэлл, Г. Оккиалини и другие в составе космических лучей открыли я-мезоны (я-мезон — первичный мезон, который, распадаясь, дает мюоны 10). я-мезоны имеют заряд + е и — е, а массы 273,2 т,,, нулевой спин и время жизни 2,55-10 сек.. Несколько позднее (1950) был открыт нейтральный я-мезон (яо), с массой 264,2 т , нулевым спином и временем жизни <2,1-10 сек. В настоящее время известно три сорта я-мезонов я , я ,, они интенсивно взаимодействуют с нуклонами, легко рождаются при столкновении нуклонов с ядрами, т. е. являются ядерно-активными. В наше время считается общепринятым, что я-мезоны являются квантами ядерного поля, которые предсказал X. Юкава, и что они ответственны за основную часть ядерных сил ( 27).  [c.339]

Сильные взаимодействия имеют место между нуклонами, антинуклонами, гиперонами, антигиперонами, между л"--, я -, / -мезонами. Сильные взаимодействия не имеют места для леп-тонов. Сильными взаимодействиями обусловлены связи нуклонов в ядре (почему они и называются ядерными взаимодействиями) и процессы образования гиперонов и мезонов при ядерных столкновениях. Основная часть ядерного взаимодействия (ядерных сил), по-видимому, обусловлена л-мезонным обменом между нуклонами в ядре. Поэтому сильное взаимодействие называется также я-ме-зонным взаимодействием. Эти взаимодействия характеризуются следующими законами сохранения электрического заряда, барион-ного заряда, энергии, импульса, спина (момента количества движения), изотопического спина Т и его проекции странности (вытекает из законов сохранения Т , электрического и барионного зарядов), четности.  [c.360]

В 1935 г. идея Хамма была развита японским физиком Юка-ва, который показал, что для объяснения малого радиуса действия ядерных сил и других их свойств нужно предположить, что при взаимодействии нуклоны обмениваются нестабильными заряженными или нейтральными частицами с массой 200— 300 гпе. Для того чтобы эти частицы могли выполнять роль ядерных квантов, переносчиков ядерных сил, они должны обладать свойством ядерной активности, т. е. интенсивно рождаться в нуклон-нуклонных соударениях и сильно поглощаться ядрами.  [c.23]

Атомное ядро с зарядом Z и массовым числом А состоит из А нуклонов 2 лротонов и А — Z нейтронов, связанных между собой ядерными силами. В ядре нет электронов.  [c.98]

Существование в природе простейшего ядра — дейтона, состоящего из нейтрона и протона с параллельно направленными спинами, и отсутствие аналогичного ядра с антипараллель-ными спинами у нуклонов указывает на спиновую зависимость ядерных сил. Об этом же говорит эффект, компенсации спинов, проявляющийся в разной устойчивости четно-четных, нечетнонечетных и нечетных ядер.  [c.486]


Смотреть страницы где упоминается термин Ядра и ядерные силы : [c.222]    [c.8]    [c.88]    [c.91]    [c.131]    [c.132]    [c.16]    [c.24]   
Смотреть главы в:

Гиперреактивная механика  -> Ядра и ядерные силы



ПОИСК



СТАБИЛЬНЫЕ ЯДРА И ЯДЕРНЫЕ СИЛЫ Свойства стабильных ядер

Ядерные силы

Ядерные силы. Капельная модель ядра

Ядерные силы. Энергия ядра Электрическое поле и ядерные силы



© 2025 Mash-xxl.info Реклама на сайте