Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шумы кавитации

По канавке 1 масло отводится из замкнутого объема между зубьями, находящимися в зацеплении. На рис. 345 этот объем, заштрихован. Его увеличение приводит к шумам, кавитации, а уменьшение — к повышению давления масла и большим местным нагрузкам шестерен.  [c.498]

При описанном процессе всасывания с начальной кавитацией цилиндр к ко)щу входа всасывания будет заполнен и подача насоса не снизится, а его работа будет протекать с повышенным шумом и вибрацией.  [c.296]


К разрушению металла и появлению кавитационных шумов. Последствия кавитации настолько существенны, что обычно при проектировании насосов, турбин и винтов лопасти рассчитывают так, чтобы на них не возникала кавитация.  [c.118]

Шумы, возникающие при появлении кавитации, настолько велики, что они могут служить причиной вибрации отдельных элементов машин, приводящих к неустойчивой работе их и даже разрушению.  [c.118]

Примерно до 40-х годов XX в. развитие исследований кавитации гребных винтов и насосов шло очень медленно в связи с трудностью создания экспериментальных лабораторных установок, обеспечивающих большие скорости движения жидкости. Кавитация рассматривалась только как вредное явление, сопровождаемое шумом, вибрацией, эрозией и падением упора гребного винта.  [c.10]

Кавитация сопровождается характерным шумом и треском внутри насоса, понижает к. п. д. насоса, напор и иногда вызывает вибрацию агрегата. Особенно быстро при этом разрушается чугун. Более стойкими металлами оказываются бронза и нержавеющая сталь, но и они подвергаются разрушению. Поэтому кавитация при работе насосов недопустима, а высота всасывания должна быть такой, при которой возникновение кавитации невозможно. Отсюда следует, что для устранения возможности возникновения кавитации необходимо обеспечить минимальное избыточное давление всасывания А//, определяемое зависимостью  [c.262]

На участках многих местных сопротивлений скорости потока резко возрастают, в результате чего давление в нем уменьшается. Если давление становится ниже давления насыщенных паров жидкости, протекающей через местное сопротивление (или непосредственно за ним), возникает кавитация, неблагоприятно отражающаяся на работе оборудования и приводящая к вибрации, шумам и эрозионному разрушению материала. При наличии кавитации местные потери напора заметно возрастают. Кавитационные свойства местных сопротивлений оцениваются по критическому значению безразмерного числа— числа кавитации х, при котором в данном местном сопротивлении начинается кавитация  [c.222]

Кавитация обычно сопровождается рядом нежелательных явлений появляются вибрации, сильный шум.  [c.35]

Если давление во входной части насоса понизится до некоторого критического значения (для дегазированных жидкостей до давления насыщенных паров), возникает кавитация — нарушение сплошности потока вследствие выделения паров и растворенных газов. Кавитация сопровождается характерным шумом, вибрацией насосной установки, падением напора, подачи, мощности и КПД.  [c.135]


С точки зрения акустической диагностики важным является то обстоятельство, что акустические сигналы некоторых источников можно с достаточной степенью точности описать детерминированными периодическими функциями, сигналы других источников носят случайный характер. Из перечисленных выше источников сигналы, близкие к детерминированным, вызывают дисбалансы, многие виды механических ударов, сирены, вихри Кармана. Случайные вибрации и шумы вызывают хаотические удары, трение, ошибки изготовления деталей, турбулентность, кавитация.  [c.11]

Кавитация является одним из самых мощных источников вибрации и шума насосов. Причем на виброакустические характеристики насосов существенное влияние оказывает уже начальная стадия кавитации, возникающая в небольших по площади областях.  [c.170]

Величина показателя Р изменяется в зависимости от стадии кавитации, В осевых насосах (см. рис. IV. 1) в начальный момент развития паровой кавитации (область 2) р = 30-н20, а в зоне развитого кавитационного шума (область 3) р 9. В центробежных насосах величины Р соответственно равны в области 2 р = = 12-ь14 в области р 6  [c.172]

С точки зрения обслуживания вспомогательный насос с всасывающим трубопроводом является самым важным элементом системы. Нужно стремиться обеспечить во всасывающем трубопроводе ламинарный поток, для чего избегать изгибов труб под острыми углами, резких изменений внутреннего сечения трассы. Следует применять разъемное соединение трубопровода с насосом, чтобы легко демонтировать последний для ремонта и профилактических осмотров. Не допускается появление разрежения на всасывании насосов, которое может явиться причиной кавитации. Нельзя ставить насос на резонирующую опору, поэтому в качестве фундамента следует использовать плиту или тяжелое литое основание. Соединение валов насоса и двигателя следует выполнять с минимальной несоосностью, что снижает шум и увеличивает долговечность системы.  [c.98]

Наконец, кавитация сопровождается характерным шумом и разрушением (эрозией) деталей, находящихся в кавитационной зоне. Установлено, что при кавитации в воде с увеличением температуры воды от нуля до 50—60° С эрозионные разрушения увеличиваются в несколько раз, а при дальнейшем повышении температуры ослабевают и затем совершенно исчезают при 100 С. При кавитации других жидкостей кавитационное воздействие с приближением к температуре кипения также ослабевает. Опыты показали Л. 85], что интенсивность эрозии существенно зависит от разности внешнего давления и упругости пара. Если эта разность равна нулю, эрозии не наблюдается. С увеличением поверхностного натяжения жидкости эрозионный износ значительно увеличивается [Л. 49].  [c.55]

При работе насоса во всасывающей линии возникает разрежение. Из жидкости при этом может выделяться растворенный газ в виде пузырьков, газ может подсасываться через неплотности. Из опыта эксплуатации насосов на воде установлено, что наличие воздуха в жидкости практически не влияет на его работу. Малые количества газа проносятся через рабочее колесо. При больших количествах наблюдаются сепарация жидкости с образованием газовой пробки и связанное с этим колебание расхода. Лишь при объемном содержании газа 8—10% происходит срыв подачи [1]. Если давление пара перекачиваемой среды выше давления на входных кромках рабочих колес, то возникает кавитация — вскипание жидкости с быстрой последующей конденсацией пузырьков пара. В насосе появляются шум, удары и вибрация, которые разрушают детали. Для пра-. вильной работы насоса необходимо, чтобы давление в высшей точке всасывающей линии было больше давления пара жидкости при рабочей температуре. Иногда для подавления кавитации используют следующий прием при прокачке воды и кислот во всасывающий патрубок вводят некоторое количество газа, присутствие которого мешает схлопыванию пузырьков пара [3].  [c.55]

Вибрация и шум, вызванные кавитацией, составляют широкий спектр частот колебаний. Ранние стадии кавитации проявляются в высокочастотной части- спектра, с ростом интенсивности кавитации спектр расширяется в область средних и низких частот. Когда кавитация переходит в срывную стадию, низкочастотные вибрации настолько сильны, что могут вызвать поломку насоса.  [c.87]


С появлением кавитации производительность насоса понижается, появляется характерный шум, происходит эмульсирование жидкости, а также наблюдаются резкие колебания давления в нагнетательной линии и ударные нагрузки на детали насоса, вызывающие преждевременный выход его из строя. Кроме того, возможно местное кавитационное разрушение (разъедание) поверхностей деталей с образованием на них характерных изъязвлений (оспинок), причем в первую очередь разрушаются (разъедаются) острые края деталей. На рис. 1.17 показан пример характерного кавитационного разрушения плунжера распределительного золотника (клапана) следящей гидросистемы, работавшего в условиях значительного дросселирования жидкости.  [c.47]

Наиболее распространенной причиной шума в насосе является кавитация, большая интенсивность которой вызывает непоправимые механические повреждения в насосе за короткий срок. Причины кавитации могут быть следующие  [c.18]

Изменение в широких пределах рабочих параметров гидравлических машин (напора, расхода, мощности) приводит к тому, что в ряде случаев, несмотря на принимаемые меры, машины работают в режимах с развитой кавитацией. Помимо ухудшения энергетических характеристик машин, повышения вибрации и уровня шума, отрицательные последствия кавитации проявляются в кавитационном разрушении рабочих органов машины. При наличии в воде взвешенных наносов интенсивность этого разрушения резко возрастает вследствие абразивного износа. Механические повреждения рабочих органов гидравлических машин в результате кавитационной эрозии или истирающего действия абразивных частиц могут за относительно короткий срок достигнуть размеров, затрудняющих нормальную эксплуатацию машин и даже делающих ее практически невозможной.  [c.5]

Разрушение кавитационных пузырей при переносе их потоком в область с давлением выше критического, происходит с очень большой скоростью и вызывает гидравлический удар. Наложение большого числа таких ударов приводит к появлению характерного шипящего звука. Таким образом, возникновение кавитации всегда сопровождается усилением шума. Значение этого последствия кавитации изменяется в зависимости от назначения гидравлического оборудования.  [c.25]

Стадия начальной кавитации соответствует условиям, при которых появляются первые незначительные признаки кавитации слабое усиление шума, наличие небольшого количества кавитационных пузырей, которые образуют неустановившуюся кавитационную зону. Как правило, на этой стадии внешние характеристики гидравлической машины практически не изменяются.  [c.25]

На рис. 62 приведена зависпмость порога кавитации в воде при комнатных температурах от частоты [27]. Кривая 1 относится к дегазированной воде, кривая 2 — к воде, насыщенной воздухом. Порог iggijy кавитации определялся по шуму кавитации. Порог низок для частот до 10 фц и резко возрастает для более высоких частот. Это согласуется с приведенными выше результатами теории газовой кавитации [16].  [c.271]

Каверны вначале имеют вид маленьких пузырьков (стадия начальной кавитации). Если давление вблизи пузырьков снова поднимается и становится выше давления парообразования, то пузырьки с шумом схлопываются . Это приводит к эрозии и износу соседних с ними твердых поверхностей (металлических лопастей винтов и турбин, бетонных водосбросов, плотин и т, п.). Если же давление остается пониженным, то пузырьки сливаются, что может привести к образованию около обтекаемого тела одной каверны, имеющей размеры, сравнимые с размерами тела. Фотография такой каверны приведена на рис. 146. В этом случае кавита-10 Б. Т. Бмдев 2 0  [c.289]

Явление парообразования при пониженном давлении, обусловленном динамикой потока, и конденсация образовавшихся паров, сопровождаемая местными гидравлическими ударами, называется кавитацией. В кавитационной зоне, где непрерывно образуются и конденсируются пузырьки пара, наблюдается разрушение поверхности трубы. Работа гидравлических машин в кавитационном режиме сопровождается характерным шумом, а их напор, мощность и КПД резко падают. Явление кавитации возникает также при колебательных движениях тела в жидкости (гидровибраторы).  [c.40]

Если содержащая такие паровоздушные пузырьки вода при своем движении поступит в область с повышенным давлением, где оно будет выше давления насыщенных паров, то начнется захлопывание пузырьков. Вследствие их исчезновения при мгновенной конденсации пара происходит местное повышение давления до 1000 и более атмосфер. Это явление называется кавитацией. Механическое действие повышенного давления (местные удары при мгновенном заполнении жидкостью объемов, освободившихся в ре зультате конденсации паровоздушных пузырьков) приводит к разрушению материала конструкций в той области, где происходит явление кавитации, сопровождаемое характерным шумом и треском. Такое разрушение материала называется кавитационной эрозией. Кавитация обычно наблюдается в гидравлических турбинах, центробел<ных насосах, напорных трубах и т. д.  [c.15]

Появление кавитации в насосах сопровождается рядом характерных явлений, отрнцателвно сказывающихся на работе насоса. При разрушении кавитационных пузырьков в зоне повышенного давления возникают шум и вибрация. Уровень шума зависит от размеров насоса и степени развития кавитации. Кавитационный шум проявляется в виде характерного потрескивания в зоне входа в рабочее колесо, развитая кавитация сопровождается уменьшением КПД насоса и разрушением (эрозией и коррозией) поверхности лопаток рабочих колес. Напор и мощность также снижаются. Из этого следует, что работа насоса в условиях кавитации недопустима.  [c.157]


Нарушение соосности йасоса и привода, при этом насос не пускается в работу насос не засасывает жидкости (причиной этого могут быть засорение фильтрующей сетки, попадание воздуха в насос, неисправность обратного клапана на всасывающей линии насоса и т. д.) насос при полном открытии напорной задвижки не дает необходимой подачи (это может быть следствием засорения напорной магистрали, а также увеличения гидравлических потерь в насосе при его износе, засорении или повреждении рабочего колеса, падении напряжения электропитания двигателя) повышенные вибрации, удары и шумы могут возникнуть вследствие засорения или неравномерного износа лопастей рабочих колес, кавитации, слабого крепления подводящей и отводящей магистрали и других причин..  [c.201]

Гидродинамические и аэродинамические источники вибраций и шумов имеются во всех машинах, где есть потоки жидкости или газа. Основная причина появления звука — неоднородность потока, вызванная периодическим его прерыванием (сирены, компрессоры, вентиляторы), турбулентностью, кавитацией, вихрями и т. д. Неодиородпость образует градиенты скоростей частиц жидкости (газа), вследствие чего возникают местные изменения плотности и давления, которые распространяются в виде акустических волн, излучаясь в воздух и проникая в упругие конструкции. С источниками такого типа можно ознакомиться в работах [30, 31, 81, 270, 324, 331, 337, 381].  [c.11]

К регулирующей арматуре, применяемой на АЭС, помимо ранее изложенных общих требований предъявляются дополнительные требования, связанные с ее функциональным назначением высокая точность поддержания заданных параметров регулирования обеспечение требуемой пропускной гидравлической характеристики максимально возможная пропускная способность при заданном диаметре трубопровода широкий диапазон регулирования максимальное снижение кавитации минимальный уровень шума дистанционное управление в связи с нежелательностью установки электрических или пневматических исполнительных механизмов в необслуживаемых помещениях с повышенной радиоактивностью. Указанные требования должны сочетаться с повышенным сроком службы, увеличенными межрегламентными периодами и высокой надежностью.  [c.51]

Под кавитацией поним ают образование внутри насоса пространства с пониженным давлением, соответствующим процессу парообразования при температуре перекачиваемого мазута. Мазут начинает вскипать и в насосе образуются полости, заполненные паром. При малейшем увеличении (давления пар конденсируется и в эти полости устремляется мазут с большой акоростью, вызывая гидравлический удар в корпусе яаооса. В результате этого возникают вибрация насОса и шум и уменьшаются его производительность, создаваемый напор и к. п. д. Нередко кавитация приводит к аварии насоса.  [c.107]

ТТод кавитацией понимают образование внутри насоса пространства с пониженным давлением, соответствующим процессу парообразования при температуре перекачиваемого мазута. Мазут начинает вскипать, и в насосе образуются полости, заполненные Паром. При малейшем увеличении давления пар конденсируется, и в эти полости устремляется с большой скоростью мазут, вызывая гидравлический удар в корпусе насоса. В результате этого возникают ви брация насоса и шум и уменьшаются его производительность, создаваемый напор и к. п. д. Нередко кавитация приводит к аварии насоса. Явление кавитации при перекачке мазута может возникнуть а) при понижении уровня ниже расчетного в резервуаре, из которого перекачивается мазут б) при регулировании подачи задвижкой на всасывающем трубопроводе в) при повышении температуры мазута сверх допустимой г) при недостаточном сечении всасывающего трубопровода д) при неправильной установке насоса.  [c.79]

Все большее развитие и внедрение в эксплуатацию получают технические решения, основанные на регулировании частоты двигателей насосов и вентиляторов. Новые технические решения на- цравлены на уменьшение кавитации и шума. В связи с этим увеличивается срок службы арматуры. Одновременно со снижением стоимости улучшаются свойства створных и шаровых клапанов.  [c.186]

Н. а. занимает промежуточное место между линейной теорией звука и теорией ударных волн. Предметом её исследований являются слабо нелинейные волны, в то время как ударные волны, как правило, сильно нелинейны в классич. же акустике нелинейные эффекты не рассматриваются вообще. Н. а. близка к нелинейной оптике и др. разделам физики нелинейных волн. К осн. вопросам, к-рыми занимается совр. Н. а., относятся распространение волн конечной амплитуды, звуковые пучки большой интенсивности и их самовоздей-ствие, нелинейное поглощение и взаимодействие волн, особенности нелинейного взаимодействия в твёрдых телах, генерация и распространение интенсивных шумов, усреднённые э екты в звуковом поле, акустич. кавитация и др.  [c.288]

Акустический шум. Источником акустич. Ш. могут быть любые нежелательные механич. колебания в твёрдых, жидких и газообразных средах. Различают механич. Ш., вызываемый вибрацией, соударениями твёрдых тел (Ш. станков, машин и т. п.) аэро- или гидродинамич. Ш., возникающий в турбулентных потоках газов или жидкостей в результате флуктуаций давления (напр., Ш. в струе реактивного двигателя) термодинамич. III., обусловленный флуктуациями плотности газа (напр., в процессе горения), а также резким повышением давления (напр., при взрыве, электрич. разряде) кавитац. Ш., связанный с захлопыванием газовых полостей и пузырьков в жидкостях кавита-щЛ). Акустич. Ш. (напр., авиац. и ракетных двигателей) — источник НЧ-помех в работе радиоэлектронных устройств и одна из причин нарушения их работоспособности. В ряде случаев акустич. Ш. служит источником информации, т. е. выполняет роль сигнала. Так, по Ш. подводных лодок и надводных судов осуществляют их пеленгацию шумоподобные сигналы используются в радиоэлектронике для разл, измерений.  [c.479]

Давление ра зависит от рода жидкости и ее температуры. Величина р зависит от скорости жидкости (она уменьшается с увеличением скорости). При определенном для данных условий значении скорости возникает кавитация. По гипотезе проф. Феттингера, частицы жидкости, пролетев пустоты, ударяются с большой силой о стенки каналов машины. Выделившихся из жидкости паров и газов так мало, что они никакого амортизирующего действия оказывать не могут, в результате кавитация сопровождается разъеданием материала (эрозией), шумом и стуком в машине вследствие неупругого удара, а также падением к. п. д.  [c.325]

Влияние кавитации на работу данной гидравлической машины (увеличение потерь энергии, усиление шума и вибраций, кавитационная эрозия) не постоянно и зависит от стеиени развития кавитации. Деление процесса развития кавитации на различные стадии в известной мере условно, однако обычно принято различать начальную, частично развившуюся и полностью развившуюся кавитации.  [c.25]


Смотреть страницы где упоминается термин Шумы кавитации : [c.399]    [c.275]    [c.280]    [c.273]    [c.172]    [c.243]    [c.347]    [c.296]    [c.228]    [c.127]    [c.164]    [c.15]    [c.26]   
Смотреть главы в:

Введение в нелинейную акустику Звуковые и ультразвуковые волны большой интенсивности  -> Шумы кавитации



ПОИСК



Кавитация



© 2025 Mash-xxl.info Реклама на сайте