Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение цилиндрического изгиба пластинки

Дифференциальное уравнение цилиндрического изгиба пластинки. К изложению теории изгиба пластинок мы приступим с решения простой задачи об изгибе длинной прямоугольной пластинки, несущей поперечную, не изменяющуюся по длине пластинки нагрузку. Изогнутую поверхность участка такой пластинки, достаточно удаленного от ее концов ), можно при этом считать цилиндрической, с осью цилиндра, параллельной длине пластинки. Мы будем вправе в этих условиях ограничить исследование одной лишь элементарной полоски, вырезанной из пластинки двумя плоскостями, перпендикулярными к длине пластинки и отстоящими одна от другой на единицу длины (положим, на 1 см). Прогиб такой полоски выразится  [c.14]


Это уравнение представляет собой дифференциальное уравнение. изогнутой упругой поверхности пластинки. От соответствующего уравнения изогнутой оси балки оно отличается тем, что вместо жесткости поперечного сечения балки при изгибе EJ здесь берется цилиндрическая жесткость D. Цилиндрическая жесткость пластинки D больше жесткости поперечного сечения балки EJ. При i = 0,3 величина D больше ЕЗ примерно на 10 %.  [c.502]

В предыдущих параграфах этой главы рассмотрены простые случаи изгиба прямоугольных пластинок — цилиндрический и чистый. В этих случаях изгиба внутренние силовые факторы в поперечных сечениях пластинки определяют, как в балках,— непосредственно через внешнюю нагрузку, а прогибы — интегрированием простого дифференциального уравнения второго порядка.  [c.508]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

Следует добавить, что дифференциальные уравнения, описывающие процессы изгиба и выпучивания длинной прямоугольной пластинки по цилиндрической поверхности, образующая которой параллельна длинной стороне пластинки, лишь значениями некоторых коэффициентов (см. ниже) отличаются от соответствующих уравнений изгиба и устойчивости слоистых балок и стержней. Точно также уравнения, описывающие процессы изгиба и выпучивания длинной панели по цилиндрической поверхности, аналогичны соответствующим уравнениям изгиба и устойчивости арки. Так возникают пары близких между собой систем дифференциальных уравнений, характеризующих механическое поведение существенно различных элементов конструкций. Ясно, что методы исследования краевых задач для этих близких систем уравнений одинаковы, а результаты, полученные при решении одной из них, сохраняют свое значение и для другой. Поэтому сформулированные ниже выводы о характере и степени влияния поперечных сдвигов, обжатия нормали, вида краевых условий на характеристики напряженно-деформированного состояния и критические параметры устойчивости слоистых длинных пластин и панелей остаются справедливыми для балок, стержней и арок.  [c.94]


В этом выражении Z)= /i /12(l—fi )—цилиндрическая жесткость пластинки, а w—прогиб ее срединной поверхности. Чтобы получить дифференциальное уравнение изгиба, Кирхгофф пользуется принципом виртуальной работы, согласно которому работа, произведенная нагрузкой q, распределенной по пластинке, на всяком возможном перемещении, равна приращению потенциальной энергии пластинки, т. е.  [c.306]

Рассмотрим бесконечную горизонтальную пластинку из вязко-упругого материала постоянной толщины Н. Примем за плоскость X, у срединную плоскость пластинки, а положительную координату 2 и смещение т будем отсчитывать вниз. Пластинка слегка изогнута по цилиндрической поверхности, ордината которой хю, представляющая прогиб пластинки, зависит от координаты X и времени I, а также от внешних сил, состоящих из распределенной нагрузки р = Цх, 1 и контактного давления д = —кш, создаваемого основанием. К этому случаю одномерного изгиба пластинки можно применить развитую в гл. 9 теорию изгиба гибкой вязко-упругой балки, предполагая, что последняя изгибается под действием суммы некоторой распределенной нагрузки р и контактного давления д = —кт со стороны основания. Принимая во внимание уравнение (9.9), получаем дифференциальное уравнение для прогибов т такой балки  [c.347]

Балку длины I и единичной ширины будем представлять себе вырезанной" из пластинки двумя нормальными сечениями у = с, у=с+ с = onst). Уравнения ее изгиба полностью аналогичны уравнениям цилиндрического изгиба пластинки. Эти уравнения получим из общей системы (3.5.1) — (3.5.7), опуская в ней нелинейные и динамические слагаемые и принимая во внимание равенства = О, справедливые при перечисленных условиях для обеих рассматриваемых конструкций. Кроме того, в задаче изгиба пластинки верно равенство = О, а в задаче изгиба балки — уу Обращаясь к дифференциальным уравнениям равновесия (3.5.7), замечаем, что второе и пятое из них удовлетворяются тождественно, а остальные записываются в виде  [c.95]

Исследуя цилиндрические оболочки, подвергнутые внутреннему давлению, Грасхоф не только применяет формулы Ламе, но учитывает и местные напряжения изгиба, возникающие в тех случаях, когда края оболочки жестко соединяются с торцовыми плитами. В этом исследовании он пользуется дифференциальным уравнением прогибов продольных полосок, вырезанных из обо-лочки сменшыми радиальными сечениями ). Грасхоф дает также полные решения для некоторых случаев симметрично нагруженных круглых пластинок. Рассматривает он и равномерно нагружен-нью прямоугольные пластинки, предлагая для некоторых случаев приближенные решения.  [c.163]

Изучен также н изгиб круглой пластинки с цилиндрической аэолотро пией ). Если в дополнение к свойству упругой симметрии заданное распределение нагрузки обладает еще и симметрией относительно центра пластинки, то в обыкновенное дифференциальное уравнение изогнутой пластинки войдут лишь два значения изгибной жесткости — радиальное и тангенциальное. Формальные решения этого уравнения для любых граничных условий получить нетрудно но выбор упругих постоянных для материала потребует особой тщательности, поскольку некоторые допущения в отношении этих постоянных приводят к появлению бесконечно больших значений для изгибающих моментов в центре пластинки, даже и при сплошном распределении нагрузки.  [c.419]


Смотреть страницы где упоминается термин Дифференциальное уравнение цилиндрического изгиба пластинки : [c.96]    [c.187]   
Смотреть главы в:

Пластинки и оболочки  -> Дифференциальное уравнение цилиндрического изгиба пластинки



ПОИСК



Изгиб дифференциальные

Изгиб пластинки

Изгиб цилиндрический

Пластинки Изгиб цилиндрический

Пластинки Пластинки Уравнения

Пластинки Уравнения дифференциальные

Уравнение дифференциальное изгиба

Уравнение изгиба

Уравнение изгиба пластинки



© 2025 Mash-xxl.info Реклама на сайте