Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи устойчивости для тела с начальными напряжениями

Для записи энергетического критерия устойчивости в форме Брайана предварительно требуется определить начальные напряжения в упругом теле. При решении некоторых задач устойчивости иногда оказывается удобным записать энергетический критерий в другой форме, не содержащей непосредственно начальных напряжений невозмущенного состояния равновесия [61. Покажем, как это можно сделать.  [c.57]


В задачах устойчивости силовых конструкций часто используют дополнительное упрощающее допущение докритическое начальное напряженное состояние системы определяют по уравнениям линейной теории упругости и полностью пренебрегают изменением геометрии тела в начальном состоянии равновесия. Другими словами, используют такую модель до потери устойчивости тело напряжено, но не деформировано. В этом случае в формулах (3.24) следует отбросить подчеркнутые слагаемые, и тогда матрица [SqI (3.25) переходит в матрицу [L ], определяемую выражением (3.5).  [c.80]

Рассмотрим применение кольцевого элемента для решения задач устойчивости оболочки вращения при осесимметричном нагружении. Будем считать, что начальное напряженное состояние оболочки определяется решением задачи статики в линейной постановке, а перемещения в начальном состоянии тождественны нулю. Такие предположения соответствуют модели напряженного, но недеформиро-ванного тела в докритическом состоянии. Нагрузки будем считать мертвыми , т. е. не изменяющимися при переходе системы в смежное состояние. В этом случае решение задачи устойчивости можно получить из вариационного условия (3.29), соответствующего для упругих систем вариационному критерию в форме Брайана. Выделим из оболочки отдельный кольцевой элемент. С учетом работы сил реакций отброшенных частей на дополнительных перемещениях первого порядка малости запишем условие смежного равновесного состояния  [c.145]

В результате термодинамического анализа критерия устойчивости (9.23) установлено, что в стационарных неравномерных температурных полях процесс выпучивания практически не зависит от того, вызваны ли действующие напряжения тепловым расширением материала или внешними нагрузками. То есть критерий (9.23) для температурных задач теории упругости полностью совпадает с энергетическим условием (7.2), если под начальными напряжениями а / в момент потери устойчивости понимаются тепловые напряжения в упругом теле.  [c.211]

В исследовании устойчивости тел с начальными напряжениями и деформациями. Такая задача будет изучаться в 5.2 в предположении, что изменение геометрии тела до потери устойчивости пренебрежимо мало.  [c.101]

Задачи устойчивости для тела с начальными напряжениями  [c.131]

Анализ конкретных задач о трещинах в реальном нелинейно-упругом теле, напряженное состояние которого зависит лишь от его деформации (не зависит от поворотов), провести аналитическими средствами довольно трудно. (Решена плоская задача при условии сильного начального растяжения тела [119].) Однако выводы о концентрации деформаций (см. 3.3), о связи между раскрытием трещины и напряжениями на ее продолжении, а также о потоке энергии (см. 3.4) можно сделать, основываясь на геометрически точных соотношениях и не привлекая конкретных уравнений состояния. Достаточным является введение довольно естественных предположений общего характера, например об устойчивости материала. Оказывается, что неограниченность деформаций у края трещины не является следствием линеаризации. Она сохраняется и при точной постановке задачи. Характер особенности может измениться, но поток энергии сохраняется - линейная теория определяет его правильно.  [c.69]


Дано обоснование двух вариантов записи энергетического критерия устойчивости упругих тел через начальные напряжения и непосредственно через внешние нагрузки. Кроме того, в главе изложены основы метода Рэлея—Ритца и метода Галер кина применительно к задачам устойчивости упругих систем.  [c.39]

В изложенной формулировке задач устойчивости не учитывается изменение объема и поверхности тела в начальном состоянии равновесия, и поэтому под напряжениями понимаются некоторые условные, а не истинные напряжения. Однако такой подход, предполагающий малость деформаций, вполне оправдан для исследования устойчивости тонкостенных силовых конструкций. Кроме того, действующие на тело силы считаются мертвыми , т. е. неизменными при переходе системы в состояние, смежное с начальным. Это ограничение непринцнпиально условие (3.29) и вытекающие из него уравнения (3.31) и граничные условия (3.32) нетрудно обобщить и на тот случай, когда действующие на тело консервативные силы изменяются при сообщении системе перемещений ы . Тогда для системы в состоянии, смежном с начальным, можно записать = = ёо + = Ро + /oj, где grj и — дополни-  [c.83]

В задаче 4 этой глава рассматривалась задача статической устойчивоств упругого тела с начальными иапряжениямв при наличии следящих сил. Покажите, что соотношение (5.111) можно использовать для задачи динамической устойчивости упругого тела с начальными напряжениями при наличии следящих еид.  [c.156]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]

В настоящем обзоре представлены исследования по контактным задачам для начально-деформированных тел лишь применительно к жестким штампам. К исследованиям по контактным задачам о воздействии штампов на упругие тела тесно примыкают задачи теории трещин. Различные аспекты влияния начальной деформации на напряженно-деформированное состояние тела, ослабленного трещиной, в частности, исследование влияния начальных напряжений на образование и развитие трещин, проблемы устойчивости трещин в упругих телах и т.п. рассматривались В. М. Александровым, Л. М. Филипповой [8], В. М. Александровым, В. В. Соболем [6], В. Б. Зеленцовым, Л. М. Филипповой [25], В. Б. Зеленцовым, Ю. Е. Пузановым [23], Л. М. Филипповой в ряде работ [30-32]. Большой цикл работ в этих направлениях выполнили А. Н. Гузь [19], а также его ученики В. И. Кнюх, В. М. Назаренко [22] и др.  [c.240]


В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Смотреть страницы где упоминается термин Задачи устойчивости для тела с начальными напряжениями : [c.131]   
Смотреть главы в:

Вариационные методы в теории упругости и пластичности  -> Задачи устойчивости для тела с начальными напряжениями



ПОИСК



188—201 — Напряжения 177 Устойчивость

Задача в напряжениях

Задача начальная

Задачи с начальными напряжениями

Напряжение начальное



© 2025 Mash-xxl.info Реклама на сайте