Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поведение кремния

Итак, вопрос о различном поведении кремния в сварных швах, имеюш,их аустенитную яли аустенитно-ферритную структуру,  [c.204]

Для анализа особенностей поведения кремния в двухфазных железомарганцевых сплавах важное значение имеет исследование О. А. Банных [73], который показал, что кремний ускоряет выделение углерода из аустенита  [c.39]

Межзеренный вязкий характер разрушения в значительной степени объясняется особенностями поведения, кремния. Кремний ускоряет выделение углерода из аусте-нита, создавая запрещенные для углерода зоны на границе зерен [73]. Обезуглероженная граница зерен становится менее прочной и более вязкой по сравнению с телом зерна.  [c.267]


Поведение кремния и кремнезема в кислой печи имеет некоторые особенности. Кремний во время расплавления шихты окисляется кислородом, содержащимся в печных газах  [c.36]

Наиболее подробно исследовано поведение кремния [395]. Изменение внутреннего трения и электросопротивления монокристаллов кремния, отожженных в вакууме при П00° С в течение 1,5 ч в процессе усталости при упруго-пластическом знакопеременном изгибе с частотой 1 гц при комнатной температуре, показало, что насыщение упрочнения связано с размножением дислокаций и достигается при 2000 циклах нагружения, а постоянное уменьшение электросопротивления объясняется разрывом отдельных связей и образованием вакансий. Кривые усталости при изгибе с вращением химически чистых образцов различных металлов при комнатной температуре и разной частоте приведены на рис. 126.  [c.164]

Поведение кремния в сталеплавильных ваннах  [c.191]

Основными реакциями, определяющими поведение кремния в сталеплавильных ваннах, являются [51] + +2 (РеО) = (ЗЮг) +2 [Ре] [81] +2 [О] = (ЗЮг).  [c.191]

Подытоживая сказанное выше о поведении кремния в сталеплавильных ваннах, можно сформулировать следующую важную закономерность остаточное содержание кремния в металле и содержание кремнезема в шлаке обычно не зависят от содержания кремния в исходной шихте ни при основном, ни при кислом процессах, а определяются характером футеровки агрегата и шлаковым режимом плавки.  [c.194]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Кроме того, коррозионное поведение металла связано с образованием слоев из продуктов реакции, которые покрывают его и защищают от дальнейшего разъедания. Например, уже незначительное количество меди способствует повышению коррозионной стойкости стали, вследствие того, что оксид меди, соединяясь с окалиной, образует довольно плотный защитный слой. В железокремнистых сплавах под действием соляной или серной кислоты образуются защитные слои для их образования необходимо, чтобы металл содержал определенное количество кремния (выше 12—13%). Кристаллы матрицы высоколегированных сталей (например, зерна хромистого феррита и зерна аустенита), так же, как и зерна феррита в нелегированной углеродистой стали, могут выявляться как окрашиванием при погружении в травитель, так и оптически после обычного травления поверхности зерен.  [c.109]


Интерпретация этих результатов осложняется тем фактом, что на поверхности раздела алюминия 6061 и бора существовала металлургическая связь (рис. 1, б), а между покрытием карбида кремния и матрицей алюминия 6061 (стрелка на рис. 1, в) — механическая связь. Эти композиты были получены методом диффузионной сварки в течение 1 ч приблизительно при 475 и 554 С соответственно. Полагают, что низкая малоцикловая усталостная прочность у композитов, волокна которых имеют покрытия, связана с поведением покрытия Si [23]. Это покрытие обладает предпочтительным направлением кристаллографического роста (111) и вытянутой кристаллической структурой, оба они ориентированы перпендикулярно оси волокна (рис. 1, в). Таким образом, ось волокна, возможно, является направлением относительно низкой прочности покрытия и последнее может служить причиной плохого усталостного поведения в малоцикловой области.  [c.401]

Различие в поведении указанных сварных соединений можно предположительно объяснить различиями в химическом составе швов швы, выполненные электродами с рутиловым покрытием, содержат в 4—5 раз меньше кремния и имеют весьма мелкозернистую структуру. Пластичность ферритной составляюш,ей материала этих швов выше, что должно благоприятствовать релаксации остаточных напряжений. В некоторой мере может проявляться легирующее действие титана, который был в незначительном количестве обнаружен только в швах, выполненных электродами с рутиловым покрытием. Действие отжига, в значительной степени снимающего остаточные напряжения и укрупняющего зерно (причем с ростом температуры увеличивался эффект), показывает преимущественную роль выравнивания структуры металла шва и зоны термического влияния.  [c.224]

Насколько известно, поверхностные свойства этих сплавов (поверхностное натяжение на границе расплав — газ), а также плотность не измерены. Тем более это относится к свойствам межфазной границы твердых и жидких фаз в этих системах. Качественные эксперименты, касающиеся поведения капель золота на поверхности кремния и золото-германиевого расплава на германии (движение капли в поле температурного градиента) были выполнены в [2, 41. Прочность германия в среде золото-германиевого расплава исследована в [16].  [c.4]

Эффективность добавок кремния подтверждена достаточно надежно [9, 17]. В случае стали 4340 с различным уровнем прочности общий положительный эффект наблюдался вплоть до кон-центраций>27о 51 [17]. При высоких уровнях прочности (порядка 2000 МПа) повышение стойкости, как можно предположить, объясняется уменьшением скорости роста трещин (рис. 4), а содержание кремния в стали при этом должно составлять не менее 1%-При среднем уровне прочности положительное влияние кремния связано с возрастанием Kы i при концентрациях 0,5—1,0% 51, что объясняется, по-видимому, изменением поведения стали при отпуске.  [c.55]

Кремний повышает стойкость к растрескиванию и уменьшает потери пластичности, если его концентрация достаточно велика [66, 67, 69, 83, 87, 90]. Эффект кремния особенно заметен при концентрациях свыше 4%, причем, по некоторым данным, при этом подавляется как зарождение, так и распространение трещин [91]. Однако такие высокие концентрации кремния стабилизируют б-феррит в микроструктуре стали, поэтому не исключено, что этот эффект в основном обусловлен изменением микроструктуры, а не состава. Как растворенная примесь в аустените кремний несколько снижает значение ЭДУ [77], и, следовательно, служит примером того, что уменьшение ЭДУ не обязательно приводит к усилению растрескивания или других форм разрушения. Правда, уменьшение ЭДУ при введении малых добавок кремния невелико и может быть просто недостаточным, чтобы вызвать заметный эффект [68]. В пользу последнего предположения свидетельствует то, что при концентрациях 0,8—1,5% кремний (слабо влияющий в этом случае на б-феррит и присутствующий, следовательно, в аустените) не изменяет поведение сплава при КР [69, 82, 92]. Предполагается, что в водных растворах влияние кремния имеет электрохимическую природу [66], однако и в этом случае исследования микроструктуры были бы очень полезны. Испытания в газообразном водороде также могли бы дать интересную информацию.  [c.72]

Интересно отметить, например, сходство коррозионного поведения сплава М, содержащего добавки фосфора, кремния, меди, никеля и хрома, н сплава F, в котором кремния и хрома крайне мало, но зато гораздо больше меди и никеля.  [c.46]


Химический состав сплавов, из которых сделаны канаты, приведен в табл. 158, а их коррозионное поведение —в табл. 159. У канатов с номерами 15, 18, 19, 20, 21, 22, 41 (экспозиция в течение 751 сут на глубине 1830 м), 48—53 видимой коррозии не было. Канат номер 15 из нержавеющей стали марки 316, модифицированной добавками кремния и азота, экспонировался в течение 189 сут на глубине 1830 м. Проволочный канат номер 41, сделанный из обычной нержавеющей стали марки 316, не корродировал в течение 751 сут экспозиции на глубине 1830 м. Однако этот же канат был покрыт ржавчиной и подвергся щелевой коррозии (а некоторые из его внутренних проволок были порваны) после 1064 сут экспозиции. Временное сопротивление каната при 1064 сут экспозиции на глубине 1830 м уменьшилось на 41 %. Так как обычная нержавеющая сталь марки 316 также не корродировала в течение первых 751 сут экспозиции, то нельзя утверждать, что добавки кремния и азота в сталь марки 316 улучшают ее коррозионную стойкость. Канаты с номерами 18—21 изготовлены из никелевых сплавов. Канаты с номерами 20 и 21 не корродировали в воде и когда они лежали на донных осадках или были в них погружены. Канат номер 22 был из сплава на основе кобальта, он также не  [c.411]

Низкая активность кремнезема (Si02 находится в связанном состоянии) обусловливает почти полное окисление кремния, содержащегося в шихте. При кислом процессе поведение кремния иное. Кислый шлак насыщен кремнеземом, и его активность можно принять равной 1, а активность FeO в кислом шлаке равна ее концентрации. Тогда для реакции [Si]+2(FeO) = (Si02) + +2[Fe] выражение для константы равновесия будет  [c.108]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Начальные скорости коррозии обоих сплавов значительно ыше окончательно установившихся значений. Такое поведение лычно связывают с медленным образованием защитной покров- й пленки из диоксида кремния SiOj, силицидов или силикатов  [c.385]

Эти результаты, получеггные Шоттки [182], использовались Симоном [183] для объяснения отклонений теплоемкости лития, натрия, кремния, серого олова и алмаза от формулы Дебая (5.6). Однако теплоемкость этих веществ меняется с температурой монотонно, любой же монотонный ход теплоемкости, как отмечал Блекмен [39], может быть получен из соответствующего непараболического спектра решетки. Поэтому рассмотренную выше схему энергетических уровней следует использовать для объяснения поведения теплоемкости только при наличии максимумов теплоемкости. Так, нанример, для некоторых редкоземельных элементов [99] подобные максимумы связываются с переходами между 4/-уровнями, расщепленными внутрикристаллическим нолем (см. п. 20).  [c.366]

Имеются экспериментальные подтверждения положительного влияния на способность железа к пассивации ионного легирования титаном и кремнием. Ионная имплантация этих элементов при дозах легирования от 0,1 до 1 10 ион/см , энергии 500 кэВ и температуре подложки от 293 до 453 К обеспечивала максимальную концентращю имплантированного элемента на уровне 20 %. При таком содержании титана или кремния в поверхностно-легированном железе резко уменьшается плотность тока пассивации в 0,5 М растворе СН3СООН + СНзСООЫа при pH = 5,0 и температуре 298 К. С увеличением числа циклов вольтамперометрии уменьшается различие в электрохимическом поведении чистого железа и железа, поверхностно легированного этими элементами, а после 42 циклов это различие в их поведении практически отсутствует.  [c.74]

Описано современное производство новых, высокостойких плавленых литых огнеупорных материалов на основе оксидов циркония, алюминия, хрома, магния и кремния. Рассмотрены важнейшие свойства огнеупоров, особенности их поведения в контакте с агрессивными средами. Приведены рекомендации по выбору н рациональному применению огнеупоров.  [c.38]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]


Тем не менее первоначальные исследования дали противоречивые результаты. Бэйкер и Крэтчли [6] обнаружили, что армирование алюминия кварцевым волокном мало улучшает усталостную прочность при знакопеременном изгибе. Подобным образом Хэм и Плэйс [20] установили, что армирование меди вольфрамовой проволокой неожиданно оказывается неэффективным для повышения усталостной прочности при циклическом растяжении. Причиной плохого поведения композитов алюминий — двуокись кремния в условиях усталости, вероятно, являются технологические затруднения, но Хэм и Плэйс [20] сделали вывод, что при циклическом нагружении в результате усталостного упрочнения вблизи конца трещины матрица ведет себя почти упругим образом, что вызывает концентрацию напряжений, достаточную для разрыва близлежащих волокон.  [c.397]

Поведение граната и топаза подобно поведению циркона. Эти минералы химически несхожи, и общность проявляется в ковалентной связи комплекса Si04. Кислородные атомы в этом комплексе располагаются но вершинам тетраэдра, а в центре размещен атом кремния. Считают, что разрушение этих связей и смещение атомов кислорода в промежуточные положения являются причиной наблюдающихся вследствие облучения анизотропных эффектов.  [c.220]

Данных об облучении карбидокремниевых варисторов нет. Однако были проведены многочисленные исследования с целью определить влияние излучения на кристаллы и пленки из карбида кремния различной формы и конфигурации. Обычно карбид кремния рассматривают как полупроводник с вентильными свойствами и как таковой относят к элементам, обладающим несимметричными характеристиками. Однако элементы в виде дисков и стержней, получаемые при смешивании карбидов кремния и кальция со связующими материалами, становятся симметричными по отношению к прямым и обратным характеристикам. В работе [80] проведено детальное исследование влияния быстрых нейтронов на электрические характеристики карбида кремния. Изучено поведение в нейтронном потоке кремниевых и карбидокремниевых диодов. Результаты показали, что в условиях облучения карбид кремния более перспективен. Под действием интегрального потока 5-10 нейтрон1см прямое напряжение  [c.358]

Как следует из приведенных данных, в процессе эксплуатации в результате действия нагрузок происходило увеличение разности потенциалов между швом и основным металлом, что согласовывалось с лабораторными результатами исследований. Однако у сварных соединений, выполненных электродами марки УОНИ-13/55, происходило разблагороживание шва, которое сопровождалось усилением его растворения. У сварных соединений, выполненных электродами марки МР-3, небольшое увеличение разности потенциалов вызывало некоторое увеличение общей потери массы, распределенной, однако, на большую площадь основного металла. В таких условиях шов этого сварного соединения был защищен. Такое изменение поведения во времени сварных соединений, выполненных электродами с рутиловым покрытием, может быть объяснено положительным влиянием рутила на структуру металла шва в связи с переходом ее в более равновесное состояние. При этом эксплуатационные нагрузки не вызывали упрочнения металла, не имеющего в твердом растворе кремния. У сварных соединений, выполненных электродами марки УОНИ-13/55, наоборот, происходило преимущественное локальное упрочнение металла шва и разблагороживание потенциала. У всех сварных соединений после термообработки гетерогенность практически выравнивалась и мало изменялась во времени.  [c.243]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]

Изучали также поведение лакокрасочных покрытий с добавками Ред04 и SiOj (0,5%). При этом было установлено, что незащищенные образцы стали через 27 сут полностью покрылись продуктами коррозии. Рыхлые продукты коррозии вследствие большой абсорбционной способности влаги стимулировали процесс коррозии. Образцы же, покрытые железным суриком, в течение года сохранились в удовлетворительном состоянии, но через 2 года на них были обнаружены тонкие трещины (под действием 0,1%-ного раствора азотнокислого серебра в трещинах выделялись тонкие нити серебра, являющиеся признаком разрушения краски). Образцы же, окрашенные железным суриком с вышеуказанной добавкой,, остались практически без изменения. Образцы из обыкновенного кровельного железа взвешивались до и после окраски. Перед определением потери массы краски снимались. Реакция на азотнокислое серебро не выявила никаких оголенных участков. Аналогичные результаты дали добавки двуокиси кремния.  [c.96]

Легирование матрицы в углеалюминиевых композициях с целью повышения коррозионной стойкости материала пока не дало положительных результатов. Вероятно, наличие в таких материалах гальванической пары алюминий—углерод является превалирующим фактором, определяющим поведение материала. В связи с этим в настоящее время ведутся поиски покрытий и технологии нанесения их на углеродные волокна. Такие покрытия, наносимые равномерно сплошным тонким слоем (из газовой фазы или химическим методом), имеют целью предотвратить непосредственный контакт между алюминием и углеродным волокном. В качестве таких покрытий рассматриваются, например, карбид титана, диборид титана, карбид кремния и др. (патент Швейцарии № 528596, 1970 г.).  [c.227]

Можно, по-видимому, считать установленным, что хром [10, 13] (особенно при небольших концентрациях) и марганец [7, 14, 15] повышают чувствительность к охрупчиванию, а кремний [9, 15—17] понижает ее, особенно в случае высокопрочных сталей. Титан также уменьшает охрупчивание [10,18] за исключением мар-тенситно-стареющих сталей, у которых чувствительность к охрупчиванию сильно возрастает с увеличением его содержания. Поведение молибдена изучено плохо результаты, полученные для сталей с разными уровнями прочности, микроструктурами и для разных сред, имеют большой разброс и подчас противоречивы [10, 19, 21]. Данные для никеля еще более отрывочны и иесо.гласованы, чем для молибдена.  [c.53]

Известно, что сплавы системы А1 — Mg — 81 могут быть чувствительны к межкристаллитной коррозии, даже когда они не чувствительны к КР [51, 56—58]. Такое коррозионное поведение наблюдается на сплаве 6061-Тб при испытаниях на образцах ДКБ ориентации ВД, нагруженных почти до уровня К1с, в среде, где развивалась значительная межкристаллитная коррозия. После испытаний образец механически доламывали. Это позволило наблюдать, что глубина межкристаллитной коррозии в области очень высоких напряжений была той же, что и на частях образца, где напряжения отсутствовали [44, 45]. Таким образом, существующие объяснения межкристаллитной коррозии этих сплавов [51], основанные на предположении, что выделяющиеся ио границам зерен частицы Mg2Si [118] или выделения элементарного кремния работают как локальные гальванические ячейки, не подходят для объяснения КР. Никакая из этих моделей не может быть использована для объяснения того факта, что высотные образцы из катаной плиты или поперечные образцы из прутков сплавов с избытком кремния (6070-Тб и 6066-Т6) чувствительны к КР, тогда как образцы сплава 6061-Т6 не разрушаются от КР-Образование локальных ячеек в результате выделений по границам зерен кремния, однако, может объяснить увеличение чувствительности к межкристаллитной коррозии сплавов с избытком кремния [51].  [c.234]


К случаю собственного поведения относятся лишь пленки двуокиси кремния, полученные ВЧ-распыле-ниями и имеющие tg б <0,001, а также пленки нитрида кремния, полученные при 1000 °С за счет реакции 51С14 и МНз.  [c.453]


Смотреть страницы где упоминается термин Поведение кремния : [c.329]    [c.7]    [c.329]    [c.60]    [c.407]    [c.329]    [c.88]    [c.348]    [c.139]    [c.400]    [c.59]    [c.72]    [c.47]    [c.61]   
Смотреть главы в:

Металлургия и материаловедение  -> Поведение кремния



ПОИСК



Кремний

Поведени

Поведение кремния в сталеплавильных ваннах



© 2025 Mash-xxl.info Реклама на сайте