Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурная перекристаллизация стали при нагреве

СТРУКТУРНАЯ ПЕРЕКРИСТАЛЛИЗАЦИЯ СТАЛИ ПРИ НАГРЕВЕ  [c.84]

ИССЛЕДОВАНИЕ ФАЗОВОЙ И СТРУКТУРНОЙ ПЕРЕКРИСТАЛЛИЗАЦИИ СТАЛИ ПРИ НАГРЕВЕ МЕТОДОМ ВЫСОКОТЕМПЕРАТУРНОЙ МЕТАЛЛОГРАФИИ  [c.103]

Размер аустенитного зерна является важной структурной характеристикой стали при ТО. От этой характеристики зависят механические свойства, особенно ударная вязкость. Одним из методов, устраняющих рост зерна может быть быстрый нагрев без длительных выдержек при температурах аустенитизации [251 . При индукционном нагреве из-за малой продолжительности процесса, включающего периодический нагрев и охлаждение при полной фазовой перекристаллизации в каждом цикле, скорость образования зерен аустенита значительно превышает их рост. Такая ТЦО эффективна в случае, когда переохлажденный аустенит характеризуется малым инкубационным периодом и небольшим временем полного распада. На рис, 1.5 показано влияние числа циклов и скорости нагрева в циклах на размер зерна аустенита. Образующийся в таких условиях мелкозернистый аустенит может быть неоднороден по составу, вследствие чего устойчивость аустенита отличается от того аустенита который образуется в равновесных условиях. Получению мелкозернистой структуры металлов и улучшению их свойств в результате ТЦО способствует, очевидно, и сведение до минимума выдержек при максимальных температурах нагрева.  [c.14]


Отжиг — фазовая перекристаллизация, заключающаяся в нагреве выше Ас с последующим медленным охлаждением. При нагреве выше Ас, но ниже Ас полная перекристаллизация не произойдет такая термическая обработка называется неполным отжигом. При отжиге состояние стали приближает-ется к структурно равновесному структура стали после отжига перлит+феррит, перлит или перлит+цементит.  [c.231]

Отжигом является фазовая пе при нагреве выше Ас, и последующ тем в результате нагрева выше Ас перекристаллизация, что соответствует отжига может быть достигнуто структурно-устойчивое состояние. После отжига получают структуры стали П+Ф-, П или П- -Ц. При охлаждении на воздухе после нагрева выше Ас, происходит отклонение от структурно-устойчивого состояния (процесс нормализации) — переходный этап от отжига к закалке.  [c.112]

Неполный (ускоренный) отжиг состоит из нагрева стали на 30— 50° С выше линии Р8К, выдержки при этой температуре и последующего медленного охлаждения (рис. 9.1). Он основан на частичной фазовой перекристаллизации стали в точке Ас,. Избыточные структурные составляющие не переходят полностью в твердый раствор (феррит — в доэвтектоидных и цементит — в заэвтектоидных сталях).  [c.114]

Высокий отпуск (для уменьшения твердости) После горячей механической обработки ста.чь чаще имеет. мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру — сорбит, троостит, бей-нкт или мартенсит — и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—700 С (несколько ниже точки Л,) в течение 3—15 ч и последующему охлаждению. При нагреве до указанных температур происходят процессы распада мартенсита н (или) бейнита, коагуляция и сфероидизация карбидов к в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. Высокий отпуск снижает твердость до требуемых значений и обеспечивает опти.мальную для обработки резанием микроструктуру — феррит н смесь зернистого и пластинчатого перлита. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига (см. с. 194), когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инстру.мента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения, высокий отпуск является единственной термической обработкой, позволяющей снизить их твердость.  [c.193]


Ускорение нагрева деформированной стали приводит к рекристаллизации а-фазы в субкритической области температур даже при ф < < Фкр. Б этом случае процесс структурной перекристаллизации может быть описан схемой, аналогичной схеме II, с той разницей, что разориентировка кристаллитов в а-фазе (см. рис. 50, II, б) вызывается рекристаллизацией, а не холодной пластической деформацией.  [c.106]

Целью нормализации являются исправление ставшей более грубой после горячей деформации или неоднородной структуры стали, гомогенизация, уменьшение размера аустенитного зерна. В процессе нормализации сталь нагревают до аустенитной области температур [Лз-Ь(20—50)°С], а затем охлаждают на воздухе. Встали происходит двойной процесс перекристаллизации (при нагреве и при охлаждении). Размер аустенитного зерНа в ходе короткой выдержки при нагреве не увеличивается (выдержка при нагреве нелегированных сталей составляет 10—15, для низколегированных сталей 15— 20 мин). Сталь, имевшая до нормализации крупнозернистую структуру, в процессе нормализации получает более тонкую структуру. Охлаждение на воздухе создает в большинстве инструментальных сталей твердую структурную составляющую, поэтому нормализуют на воздухе только нелегированные и низколегированные стали. От возникающего в процессе нормализации непреднамеренного повышения твердости можно избавиться путем отжига.  [c.140]

Особое место в разработке этой проблемы занимают работы школы В. Д. Садовского, установившего, что при нагреве стали следует различать два этапа фазовую перекристаллизацию (процесс образования аустенита) и структурную перекристаллизацию (процесс измельчения аустенитного зерна), которые в общем случае могут не совпадать по температурам. В этих работах изучены многие закономерности превращений при нагреве [11]. Тем не менее ряд важных явлений еще остается не выясненным.  [c.103]

При нагреве стали выше точки Ас , но ниже точки Ас полной. перекристаллизации не происходит. Такой вид термической обработки называется неполным отжигом (рис. 50, б, кривая 2). В этом случае не достигается полного структурного равновесия.  [c.146]

Неполный отжиг. При неполном отжиге сталь нагревают выше критической точки А , но ниже А с последующим медленным охлаждением. В этом случае происходит только частичная перекристаллизация структурных составляющих стали. В доэвтектоидных сталях перекристаллизации подвергается только перлит, избыточный феррит остается без изменения. В эвтектоидной и заэвтектоидных сталях вторичный цементит частично переходит в аустенит. Неполному отжигу подвергают стали, не требующие исправления структуры, т. е. измельчения зерен.  [c.115]

На рис. 26.1 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закали-вак)щихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.  [c.496]

Металлографическое исследование показало, что структура такого слоя состоит из высоколегированного хромом и марганцем аустенита и карбидной эвтектики. Измерениями было установлено, что карбидная эвтектика имеет микротвердость Я 1069, аусте-нит Н 464, а основной металл (сталь 35Л) в зоне термического влияния Н 254. В зависимости от температуры нагрева при наплавке в зоне термического влияния образуются следующие структурные участки неполного расплавления, перегрева, нормализации и неполной перекристаллизации (рис. 155, а). Эта зона распространяется на глубину до 10 мм, т. е. примерно в 2 раза меньше, чем при обычной газовой сварке. Участок неполного расплавления практически неразличим и сливается с участком наплавленного металла.  [c.272]


Полный отжиг. Его применяют главным образом после горячей обработки деталей (ковки и штамповки), а также для обработки отливок из углеродистых и легированных сталей. Основной целью полного отжига кованых и литых деталей является измельчение зерна — придание металлу необходимой твердости для улучшения его обработки резанием и устранения внутренних напряжений. Это достигается нагревом, не превышающим 20—40° С верхней критической точки Лсз, и медленным охлаждением. Температуру нагрева деталей, изготовленных из углеродистых сталей, определяют по стальной части диаграммы состояния (рис. 16), а для легированных сталей — по положению их критической точки Лсз, имеющейся в справочных таблицах. Время выдержки при температуре отжига обычно складывается из времени, необходимого для полного прогрева всей массы детали, и времени, необходимого для окончания структурных превращений. После нагрева и соответствующей выдержки сталь медленно охлаждают вместе с печью. Углеродистые стали охлаждают со скоростью 50—100° С в час до температуры 580—600° С. Низколегированные стали охлаждают в печи со скоростью 30—60° С в час до 500—600° С (в зависимости от химического состава стали). Высоколегированные стали целесообразнее подвергать изотермическому отжигу, так как обычным отжигом не всегда удается получить нужное снижение твердости. Полный отжиг сопровождается перекристаллизацией и законченным превращением аустенита в ферри-то-цементитную смесь.  [c.24]

Отжиг. Отжиг заключается в нагреве стали до температуры ее перекристаллизации, выдержки ее при этой температуре до окончания структурных преобразований и медленном охлаждении, чаще всего вме(сте с печью.  [c.31]

Наличие третьего участка (рис. 10, 3) и тип структурных изменений в нем зависят от исходного состояния основного металла перед сваркой. При сварке отожженного металла третий участок в зоне термического влияния практически отсутствует. При сварке сталей или сплавов титана после упрочняющей термической обработки типа закалка , закалка и отпуск или закалка и старение , а также в нагартованном состоянии (после ковки или прокатки) в этом участке, как правило, происходит разупрочнение. В первом случае оно обусловлено процессами распада пересыщенных твердых растворов (отпуском мартенсита или старением высокотемпературных остаточных фаз) и последующей коагуляцией упрочняющих фаз (карбидов в сталях и интерметаллидов и химических соединений в сплавах титана). Во втором случае к разупрочнению преимущественно приводят процессы рекристаллизации обработки. Этот третий участок принято называть участком или зоной разупрочнения, отпуска или рекристаллизации. Наиболее резкое разупрочнение металла обычно имеет место у границы этого участка с участком неполной перекристаллизации, где максимальные температуры нагрева близки к нижней критической точке фазового превращения Г ,ф,п. Поэтому основными параметрами термического цикла участка разупрочнения являются максимальная температура нагрева = н.ф.п и длительность (или р) пребывания металла при сварке выше температуры отпуска (или  [c.39]

Влияние скорости нагрева на структурную перекристаллизацию стали. Исследование структ урной перекристаллизации выполнялось на крупнозернистых закаленных образцах, что обеспечивало получение в исходном состоянии ярко выраженной внутризеренной текстуры и облегчало наблюдения за процессом измельчения аустенитного зерна. Проведенные эксперименты показали, что в стали 15Х1М1Ф при нагреве со скоростью 1 град мин аустенитное зерно восстанавливается, и его измельчение проис-  [c.109]

Д ь я ч е и к о С. С. Закономерности фазовой и структурной перекристаллизации при нагреве стали. Автореф. докт. дис. Днепропетровский металлургический институт, Днепропетровск, 1971.  [c.220]

В предьщущих разделах описан процесс структурной перекристаллизации в закаленных сталях в зависимости от условий нагрева и состояния матрицы (деформированное и недеформированное). Исходя из общности принципа кристаллогеометрического соответствия, ориентированное формирование зародыша должно иметь место и при нагреве сталей с другими структурами. Так, опыт показывает, что все отмеченные закономерности полностью справедливы для исходных бейнитных структур, причем при нагреве сталей с такими структурами иногда восстановление зерна проявляется полнее, чем для закаленных сталей. В частности, как отмечается в монографии В.Д. Садовского [ 1], в бейнитных структурах легче подавляется зернограничный эффект . Для стали 37ХНЗА с мартенситной структурой повторный нагрев со скоростью 500°С/с не предотвращает образование мелких зерен по границам. В той же стали со структурой бейнита в этих условиях нагрева зернограничный эффект практически не наблюдается, что объясняется в работе [ 1] меньшей степенью искаженности приграничных областей в бейнитной структуре.  [c.107]

В участке частичной перекристаллизации 2 на рис. 1,а) основной металл нагревается выше температуры Гн. ф. п, которая для стали соответствует началу превращения перлита в аусте-нит (критическая точка Ас ), а для большинства сплавов титана— началу а->-р-нревращения. Обычно структурные изменения в этом участке по сравнению с околошовной зоной в меньшей степени оказывают отрицательное влияние на свойства сварных соединений. Однако при определенных исходной структуре, и также условиях нагрева и охлаждения при сварке в этом участке возможно разупрочнение основного металла, обусловленное либо характером новых фаз, образующихся при последующем охлаждении, либо процессами в старых фазах при нагреве.  [c.13]

Дуговая сварка теплоустойчивых сталей в соответствии с изложенными выше рекомендациями обеспечивает кратковременные свойства сварных соединений на уровне соответствующих свойств основного металла. Однако длительная прочность соединений обычно ниже, чем у свариваемой стали. Это объясняется разупрочнением металла в околошовной зоне вследствие дополнительного высокотемпературного отпуска и неполной перекристаллизации при нагреве в интервале температур отпуска сталп — точкп Ас . При этом степень разупрочнения сварных соединений, резко выявляемая при испытании на длительную прочность, зависит, с одной стороны, от погонной энергии сварки, а с другой — от степени упрочнения сталей термической обработкой и структурной стабильности (отпу-скоустойчивости) стали.  [c.89]


В. Д. Садовским и его сотрудниками [18—20] исследованы основные закономерности фазовой и структурной перекристаллизации при нагреве стали с различной исходной структурой. Установлено, что на малолегированных высокопрочных сталях со структурой сорбита или перлита, полученной при достаточно высокой температуре (625—675 С), удается исправить зерно при обычном нагреве под закалку.  [c.20]

Отжиг — фазовая перекристаллизация, заключающаяся в нагреве выше Лсз с последующим медленным охлаждением. При нагреве выше Лс,, но ниже Лсд, полной перекристаллизации не произойдет такая термическая обработка называется неполньш отжигом. При отжиге состояние стали приближается к структурно равновесному структурой стали после отжига является перлит Ьферрит, перлит или перлит Ьцементит.  [c.163]

Большое значение для свойств рассматриваемых сталей имеют превращения, протекающие при нагреве и, соответственно, получаемое фазовое состояние после охлаждения. Хром сильно увеличивает устойчивость а-состояния стали, настолько сильно, что даже при содержании в стали значительных количеств никеля область существования у-фазы оказывается замкнутой и окруженной а-фазой. В этих условиях (см. рис. 10.2) в сталях со значительным содержанием хрома при нагреве возможны две схемы фазовых превращений. Для сплавов, находящихся в концентрационной области замкнутой петли у-фазы, нагрев в интервале температур существования одной у-фазы должен привести к полной перекристаллизации а у, с получением после охлаждения аустенитного состояния, стабильного или нестабильного, с мартенситом или без него, или же полностью мартенситного состояния в зависимости от условий охлаждения и состава стали. Однако при нагреве этих же сталей до более высоких температур можно получить а + у-область (см. рис. 10.2). По существу, а-фаза будет высокотемпературным б-ферритом. При охлаждении таких сплавов должно произойти обратное а у-превращение. Увеличение содержания хрома или других стабилизирующих феррит элементов приводит к тому, что сталь становится ферритно-аустенитной, соответствующей двухфазной а + у-области на рис. 10.2. Количество феррита в такой стали зависит от соотношения суммарного содержания аустенитообразующих (N1, С, Мп, М) и ферритообразующих (Сг, Мо, , V и др.) элементов и может быть приближенно оценено по структурной диаграмме Шеффлера. Нагрев таких сталей приводит к образованию а- и у-фазы, а охлаждение сохраняет в структуре наряду с аустенитом или продуктами его превращения и определенное количество феррита.  [c.257]

Как известно, шероховатость или чистота поверхности при механической обработке определяется в первую очередь прочностными свойствами обрабатываемого материала. При сварке плавлением воздействие термического цикла сварки вызывает в металле структурно-химические изменения, обус-ловливаюшие неоднородность прочностных свойств сварного соединения. Так, сварные соединения, выполненные из закаленных низколегированных сталей, характеризуются двумя основными участками неоднородности в зоне термического влияния (1 — разупрочненный участок, обусловленный сварочным нагревом стали до температуры Ас 2 - участок полной перекристаллизации, нагревающийся выше температуры конца фазового а—у превращения вплоть до температуры плавления). Регламентируемый уровень прочности сварных соединений из стали 09Г2С соответствует разупрочнению участка 1 на 11—13 % и упрочнению участка 2 на 8—10 %. Для стали 16ГМЮЧ соответственно 15—17 % и 10—13 %. В отдельных случаях относительное разупрочнение свариваемых сталей может превышать 40%.  [c.91]

При сварке полиморфных металлов и пх сплавов в шве и зоне термического влияния протекают фазовые и структурные превращения. Полной вторичной перекристаллизации подвергаются шов и околошовная зона, нагреваемая при сварке выше температуры аллотропического превращения. В условиях быстрого охлаждения в этих участках возможна закалка с образованием метастабиль-ных структур и резким снижением пластических свойств сварного соединения (мартенсит в легированных сталях перлитного и мартенситного класса, углеродистых сталях, титане, цирконии и их сплавах). В околошовной зоне вследствие высокотемпературного нагрева наблюдается перегрев и 1нтенсивны1"1 рост зерна. В этой зоне пластические Boii TBa ос Ювного металла обычно снижаются иаиболее резко, особенно в тех случаях, когда перегрев сочетается с последую-)цей закалко .  [c.153]

Распределение температур и изменение твердости стали в направлении, перпендикулярном к резу. Изучение термического цикла нагрева и охлаждения металла вблизи кромок реза при газовой резке тонких стальных листов по казывает, что максимальные температуры металла снижаются по мере удаления от кромки реза, а моменты наступления максимумов запаздывают. Распределение максимальных температур поперек линии реза (фиг. 180), построенное по данным опытов работы [XXIII. 5], позволяет щенить ширину зоны структурных изменений при газовой разделительной резке стали толщиной 5 мм. Для большинства конструкционных сталей, температура перекристаллизации которых лежит в пределах 700—900°, ширина этой зоны составляет около 3—5 мм.  [c.382]


Смотреть страницы где упоминается термин Структурная перекристаллизация стали при нагреве : [c.193]    [c.84]    [c.109]    [c.57]    [c.39]    [c.157]    [c.92]    [c.162]    [c.101]    [c.149]    [c.166]   
Смотреть главы в:

Образование аустенита в железоуглеродистых сплавах  -> Структурная перекристаллизация стали при нагреве



ПОИСК



Нагрев стали

Перекристаллизация

Перекристаллизация стали



© 2025 Mash-xxl.info Реклама на сайте