Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хлорный процесс

Разделение золота п серебра и получение их в чистом виде осуществляют приемами аффинажа. Известно несколько методов аффинажа золота и серебра. Наибольшее распространение получили хлорный процесс н электролитическое рафинирование.  [c.310]

Хлорный процесс основан на том, что неблагородные металлы и серебро окисляются газообразным хлором значительно легче, чем золото. Сущность этого метода заключается в продувании хлора через расплавленное черновое золото. Хлор в первую очередь взаимодействует с неблагородными металлами и серебром, золото и металлы платиновой группы реагируют в последнюю очередь. Образующиеся расплавленные хлориды неблагородных металлов и серебра не растворяются в металлическом золоте и, имея меньшую плотность, всплывают на поверхность. Часть хлоридов неблагородных металлов улетучивается.  [c.312]


Хлорный процесс широко применяют в ЮАР. Металл, поступающий на аффинаж, содержит 88—90 % Аи и 7—  [c.312]

Хлор нли хлорную известь применяют для разрушения защитных коллоидов, препятствующих протеканию процесса коагуляции для обесцвечивания воды для поддержания очистных сооружений в надежном санитарном состоянии и для обеззараживания воды.  [c.222]

Поэтому частота колебаний электрона, занявшего вакансию, будет в сотни раз больше частоты колебаний атома. А этого как раз достаточно, чтобы довести частоту колебаний электрона до оптической области. Правильность такого объяснения радиационного окрашивания подтверждается известным еще сто лет назад эффектом точно такого же окрашивания поваренной соли при нагреве ее в парах натрия с последующим быстрым охлаждением. Этот процесс приводит к избытку натрия, т. е. к хлорным вакансиям, и следовательно, к появлению центров окраски.  [c.657]

Плотность хлорной кислоты должна составлять 1,54 г/см , ортофосфорной кислоты 1,75 г/см . Вода везде дистиллированная. Растворы охлаждать в процессе приготовления.  [c.20]

Хроматные покрытия наносят на поверхности цинковых, оцинкованных или кадмированных деталей. Применяются они также для защиты от коррозии деталей из магния, меди, алюминия и других металлов. Основным компонентом хро-матных покрытий являются соединения трех- и шестивалентного хрома и хромата металла основы. Тонкие, светлые покрытия состоят преимущественно из соединений трехвалентного хрома, тогда как более толстые слои желтого цвета содержат одновременно соединения трех- и шестивалентного хрома. Процесс хроматирования осуществляется в растворе, содержащем чаще всего хромовый ангидрид, бихромат натрия или калия, небольшие количества серной и азотной кислот, а также активаторы — муравьиную кислоту, хлорное железо, нитрат цинка.  [c.129]

Процесс серебрения меди и ее сплавов включает следующие основные операции обработку поверхности детали проволочной щеткой из нержавеющей стали диаметром 60 мкм обезжиривание венской известью промывку водой декапирование 8—10%-ным раствором серной кислоты или 5% -ным раствором хлорного железа серебрение. Продолжительность серебрения зависит от необходимой толщины покрытия, состава смеси, дисперсности и формы частиц порошка и ряда других факторов. Толщина покрытия 2—3 мкм при серебрении латуни достигается за 8—10 мин.  [c.62]

Составы моющих веществ. Очистка погружением может производиться в щелочных растворах или расплавах, а также органических, хлорно-органических или эмульгирующих растворителях, эмульсиях, нейтральных или кислых растворах. Широко распространена очистка в проточной или подкисленной воде, часто служащая окончательной операцией очистного процесса. В щелочных растворах очистка продолжается 2—40 мин (чаще всего 5— 15 мин). Она характеризуется применением установок, изготовленных из обычной стали, что оказывает известное влияние на экономичность процесса. Количественный и качественный составы растворов в зависимости от величины загрязнений приводятся ниже.  [c.59]


В конце XIX в. на смену химическим способам получения хлора пришел новый электрохимический процесс, завоевавший в начале XX в. господствующее положение в мировой хлорной промышленности.  [c.173]

В процессе травления концентрация хлорного железа уменьшается и травление замедляется. Для ускорения процесса раствор хлорного железа подают под давлением , 5—2 am с подогревом до 80—90° С. Сокращение времени травления способствует повышению точности получаемых деталей, так как при длительном пребывании заготовки в растворе происходит подтравливание фольги под защитным слоем.  [c.940]

Температурный режим нагрева и проведения восстановительной реакции выбирали таким образом, чтобы обмазка из хлористого натрия не расплавлялась это обеспечивало при использовании чистого хлорида хрома отсутствие железа в металлическом хроме. Шихта состояла из смеси хлорного хрома, хлористого натрия и магниевой стружки. Перед началом процесса верхняя часть реактора нагревалась в печи до 570° К затем из системы откачивали воздух, заполняли ее гелием и продолжали нагрев до 1070° К. При этой температуре давалась выдержка в течение 2 ч, 11 163  [c.163]

Аппаратурная схема процесса обезвреживания цианистых стоков с использованием хлора показана на рис. 109. Жидкий хлор из контейнера /, помещенного на весы 2, поступает в испаритель <3. Последний представляет собой змеевик, находящийся в емкости, через которую пропускается горячая вода. Из испарителя перешедший в газообразное состояние хлор поступает в эжектор 4, куда из чана 5 с помощью центробежного насоса 6 подается также известковое молоко. В рабочей камере эжектора происходит смешение известкового молока с газообразным хлором и образование хлорной извести. Раствор хлорной извести  [c.245]

Аффинаж хлорированием проще и дешевле электролитического процесса и пригоден для рафинирования золота любой чистоты, но дает недостаточно чистое золото (обычно 995—996 пробы). Такой металл годится для использования в монетарных целях, но не удовлетворяет требованиям современной техники. К недостаткам хлорного метода аффинажа следует также отнести существенные потери серебра и платиновых металлов (если они присутствуют в исходном металле), которые остаются в очищенном золоте.  [c.315]

Применение водорастворимых полимеров является важным фактором интенсификации процессов очистки воды, по сравнению с технологиями, предусматривающими введение неорганических реагентов. Так, использование флокулянта КФ-91 на отечественном фильтрационном оборудовании по обработке осадка на очистных сооружениях г. Подольска при дозировке 5 кг/т исключило необходимость применения хлорного железа (137,5 кг/т) и извести (1800 кг/т).  [c.632]

Этим термином часто пользуются для обозначения эффективного содержания хлора в гипохлорите натрия и хлорной извести, но его применяют при хлорировании воды для того, чтобы отличить ионы хлора, которые не принимают никакого участия в процессе хлорирования, от различных эффективных форм этого элемента, обусловливающих бактерицидный эффект.  [c.282]

На рис. 125 показано изменение содержания примесей в рафинируемом золоте в процессе хлорирования. Как видно из этих данных, в реальных условиях хлорного процесса порядок перехода примесей в хлориды в общем такой же, как это следует из термодинамических расчетов. Первыми хлорируются железо, цинк, свинец. Низкокипящие хлориды железа и цинка переходят в газовую фазу. Хлорид свинца частично улетучивается, частично всплывает на поверхность металла. Улетучивание хлоридов вызывает интенсивное бурление расплава, поэтому подачу хлора в этот период ведут медленно.  [c.313]

Коагуляция примесей воды — это процесс укрупнения коллоидных и взвешенных частиц дисперсной системы за счет сил меж-молекулярного взаимодействия и объединения в агрегаты (хлопья). Завершается этот процесс отделением слипшихся частиц от жидкой среды. При осветлении и обесцвечивании воды в качестве коагулянта используют неочищенный сернокислый алюминий (глинозем) А12(804)з-I8H2O. Недостатком его является то, что он содержит до 23 % нерастворимых примесей. Поэтому в настоящее время выпускается очищенный глинозем с содержанием нерастворимых примесей до 1 %. В качестве коагулянта применяют также железный купорос FeSG4 и хлорное железо РеС1з- Скорость осаждения образующихся при этом хлопьев гидроокиси железа в 1,5 раза больше скорости осаждения хлопьев гидроокиси алюминия.  [c.150]


В качестве коагулян применяют также железный купорос FeS04, образующий в во, гидроксид железа (II), который растворенным кислородом ил. специально вводимым хлором окисляется в гидроксид железа (III). Скорость осаждения хлопьев гидроксида железа в 1,5 раза больше скорости осаждения хлопьев гидроксида алюминия. Однако процесс окисления происходит достаточно быстро только при pH выше 8. Это вызывает часто необходимость в подщелачивании воды, т. е. в добавлении извести или соды. Надобность использования дополнительных реагентов лимитирует применение железного купороса в качестве коагулянта. Однако на установках реагентного умягчения воды для коагуляции примесей применяют почти исключительно железный купорос. Наряду с железным купоросом в качестве коагулянта применяют хлорное железо РеС1з, хорошо растворяющееся в воде и образующее крупные, быстро оседающие хлопья гидроксида железа (III). Хлорное железо показало хорошие результаты при совместном его применении с сернокислым алюминием и известью.  [c.221]

Подготовить обрабатываемые поверхности путем проведения процесса химического чернения в растворе хлорного железа (10 г), концентрированной кислоты НС1 (15см ) в дистиллированной воде (50 см ) или нанесения графитового покрытия в коллоидном растворе сажи.  [c.260]

Электролиты платинирования могут быть как кислыми, так и щелочными, и практически всегда процесс электроосаждения идет с нерастворимыми анодами. Исходным продуктом для приготовления электролитов является хлорная платина Pt li или хлорплатинат натрия NajPt lo-OHaO.  [c.66]

На долю предприятий химической промышленности приходится около 12% всех энергоресурсов, потребляемых в промышленности страны [78J. Образующиеся в технологических процессах химического производства горючие ВЭР участвуют в основном в покрытии топливной нагрузки предприятий трех подотраслей (где образуется до 99% суммарного выхода горючих ВЭР)—азотной, хлорной и фосфорной. Основное количество утилизируемых горючих ВЭР потребляется на самих предприятиях — около 80%, а оставшаяся часть отпускается на сторону. В качестве топлива используется 84% всех утилизируемых ВЭР. На нетопливные нужды направляется немногим более 16% всего количества фактически утилизируемых горючих ВЭР — в технологии производства аммиака в качестве сырья в печах конверсии, в получении азота и инертных газов.  [c.29]

К 80-м годам XIX в. относятся первые заводские опыты электрохимического получения хлора на заводе Griesheim—Elektron (Германия). При разложении водных растворов хлорных солей щелочных металлов (калия или натрия) постоянным током при соблюдении определенных условий были получены одновременно три продукта хлор, водород и едкий натр (или едкое кали). В процессе электролиза на аяод выделяется газообразный хлор, а на катоде металлический натр, который, реагируя с водой, выделяет водород и образует гидрат окиси щелочного металла. Из трех названных продуктов особый (коммерческий) интерес представлял в то время едкий натр. Таким образом, получение хлора ока-  [c.173]

Для выбора технологически рациональных и экономически эффективных процессов подготовки воды необходимо знать фа-зово-дисперсное состояние удаляемых из нее примесей. Их можно разделить [58] по степени дисперсности на четыре группы. К первой относятся кинетически неустойчивые взвеси, а также бактерии и планктон. Во вторую группу входят гидрофильные и гидрофобные коллоидные частицы минерального и органоминерального происхождения, некоторые формы гумусовых вешеств, детергенты, вирусы и микроорганизмы с размерами, близкими к коллоидным частицам. Третью группу вешеств составляют растворимые соединения, находящиеся в воде в виде молекул. Это растворенные газы и органические вещества природного происхождения. И наконец, четвертая группа — это соединения, диссоциирующие в воде на ионы (электролиты). Систематизация позволяет исходя из состояния примесей исходной воды и в соответствии с условиями ее применения выбрать методы очистки. Анализ фазово-дисперсного состояния примесей дает возможность прогнозировать изменения качества воды в процессе ее обработки по выбранной схеме. Такая классификация примесей была также применена в процессе исследований городских сточных вод в [59]. При этом использовалась сточная вода Бортнической станции биологической очистки (Киев), из которой выделяли три группы при.месей взвешенные вещества, коллоиды и растворенные вещества. Наиболее весомую группу составили растворенные вещества, затем — грубые суспензии, на которые приходилась основная часть загрязнений органического характера. Наименьшую группу составили коллоиды. Органические примеси примерно на 70 % входят в состав взвешенных веществ. Исследование по коагуляции таких примесей хлорным железом  [c.52]

В [136] исследовалась эффективность процесса коагуляции городских сточных вод, характеризующихся высокой концентрацией загрязнений БПКб — 450, ХПК— 1300 мг Ог/л, аммонийного азота — 65, взвешенных веществ — 500 мг/л. Подобранные экспериментальным путем дозы реагентов составили извести — 910, хлорного железа — 220 мг/л (по безводным продуктам). Изменение состава сточной воды в процессе коагулирования н отстаивания приведено в табл. 5.2. Особенностью исследования яв--лялось подробное изучение степени очистки от основных загрязняющих примесей, включая и растворенные. Высокий остаточный показатель растворенных органических соединений по БПКз свидетельствует о возможности хорошего биологического окисления на сооружениях биологической очистки. Показана целесообразность применения в некоторых случаях коагуляции как приема первичной обработки городских сточных вод перед биологической очисткой.  [c.108]

Несколько лет тому назад Т. X. Маргулова предложила новый способ обработки котловой воды — комплексонный, В качестве комплексующего вещества ею был предложен трилон, т. е. двунатриевая соль этилендиаминотетрауксус-ной кислоты (см. рис. 12.3). Это вещество обладает способностью образовывать прочные комплексные соединения с ионами почти всех металлов. Такая способность не является уникальной многие вещества образуют прочные комплексы. Например, при смешивании раствора хлорного или хлористого железа с цианидом щелочного металла образуются весьма прочные ферри- и ферроцианиды. После их образования раствор уже не показывает присутствия ионов железа они как бы исчезают. Аналогичные процессы происходят при взаимодействии ионов алюминия с фторидами. Например,  [c.175]


В процессе длительного контакта с железоокисньши соединениями гидразин расходуется как восстановитель. В связи с этим, если имеется возможность двух-, трехнедельного отстаивания (раствора в сборной усреднительной емкости, то специальной обработки для удаления гидразина не требуется. Для ускорения разложения гидразина рекомендуется обработка раствора хлорной известью.  [c.43]

За последнее время проводится все больщее число исследований по выделению хрома из хромовых руд хлорным методом. Основой процесса служит хлорирование хромовых руд при высоких температурах с отгонкой хлоридов хрома, железа, алюминия и последующей их раздельной конденсацией [81]. Большая разность температур кипения получаемых продуктов хлорирования позволяет получить достаточно чистые от посторонних примесей хлориды хрома. Хлориды хрома могут быть либо использованы для получения металлического хрома путем электролиза в расплавленных или водных средах или непосредственным восстановлением (например, магнием, водородом), либо переработаны в окись хрома. Процесс осуществляют обычно в шахтных печах. В качестве восстановителя может быть использован каменный уголь, древесный уголь или кокс. При хлорировании хромовой руды в интервале 1200— 1300° К п введении восстановителя до 17% от веса руды извлечение хрома может быть достигнуто 100%, а при содержании железа не более 0,45% и ыапшя не более 0,25% извлечение хрома составляет 86% [81].  [c.43]

Извлечение галлия в промышленном масштабе из пылей дымоходов проводилось в Англии 130). Типичные пыли дымоходов содержали обычно около О,б" германия и 0,25% галлия. По методу, принятому в Англии, пыль сплаа,1яют с содой, известью, окисью меди и углем (необходимо также железо, но оно обычно находится в пылях). Таким образом получают корольки металла, содержащие большую часть германия и галлия из исходного сырья. Корольки металла хлорируют в разбавленном растворе хлорного железа, при этом галлий и германий растворяются. Образующийся тетрахлорид германия отгоняют из раствора, после чего раствор охлаждают для кристаллизации солей медн, которые отделяют центрифугированием. Затем раствор разбавляют и обрабатывают алюминием для осаждения оставшейся меди н других металлов одновременно железо восстанавливается до Двухвалентного состояния. Раствор неочищенного хлорида галлия, полученный таким образом, смешивают с изопропиловым эфиром, чтобы экстрагировать хлорид галлия (об экстракции см. выше при описании получения галлия из цинковых руд). После отгонки эфира хлорид галлня перерабатывают, как это указано выше. Описан процесс 1151 получения соединений гаялия из газов, образующихся прп сжигании угля. Газы подвергают. мокрой очистке разбавленным раствором щелочи, который улав ти-вает галлий и некоторые другие металлы. Этот раствор едкого натра циркулирует, пока содержание галлия не станет достаточным для экономичного  [c.168]

Электролитическое полирование и травление образцов тория, подготовленных надлежащим образом, явились предметом многочисленных исслсдова-инн. В литературе описаны различные способы, с тличающиеся друг от друга составом электролита, напряжением, продолжительностью процесса н другими показателями. Как правило, применение в качестве электролита органических растворов дает лучшие результаты, чем применение водных растворов, но в состав некоторых из наиболее удовлетворительных органических электролитов входит органический раствор хлорной кислоты.  [c.807]

Хлорная известь aO la ГОСТ 1692—85 1,2 Хлорирование воды для обеззараживания и интенсификации процессов ее осветления и обесцвечивания  [c.87]

Очистка воды от алкилбензолсульфонатов (АБС) может быть достигнута окислением озоном или диоксидом хлора, сорбцией активным углем или бентонитом, а также хлопьями гидроксида алюминия или железа. При введении в воду серно-кислого алюминия или хлорного железа (100... 120 мг/л) и осветлении воды отстаиванием и фильтрованием содержание АБС снижается с 10 до 2. .. 2,5 мг/л или с 3 до 0,5... 0,6 мг/л. Процесс удаления АБС коагулированием нужно проводить при значениях эН 5. При повышении величин pH снижается эффективность данного процесса. Более глубокое удаление АБС достигается введением в воду порошкообразного активного угля или фильтрованием воды через слой гранулированного активного угля. При введении в воду 50 и 75 мг/л активного угля ВАУ концентрации АБС снижалась соответственно с 2 до 0,5 мг/л и с 6 до 0,32 мг/л. Фильтрование воды со скоростью 10 м ч через 0,25-метровый слой гранулированного угля снижало концентрацию АБС в воде с 1,32 до 0,15 мг/л. Сорбционная емкость активного угля по АБС составляла около 7% массы угля.  [c.662]

Был описан несколько сходный процесс выделения и извлече-железа, кобальта и никеля от скрапа сплавов цветных метал-[881, заключающийся в пирометаллургической подготовке апа, электролитическом растворении в хлорной среде, экстрак-нном разделении и электролитическом выделении металлов, т процесс описан в главе, посвященной никелю и кобальту ем, как и в процессе фирмы Fal onbridge , железо перед экс-кцией окисляют.  [c.151]

Извлечение металлов из бедных и комплексных сульфидных руд экстракцией уже применяется. Недавно предложены два новых гидрометаллургических процесса, использующие экстракцию. Один из них — Symet -процесс заключается в выщелачивании раствором РеС1з, использовании камеры специальной конструкции и экстракции цинка [35]. Процесс проверен на опытной установке производительностью 6 т/с. Получаемую в этом процессе 98 %-ную медь необходимо дополнительно очищать до 99,9 % [36]. Возможно, что суммарные затраты на новый процесс будут ниже затрат на традиционный процесс плавки. Проблемы, возникшие в связи с использованием специальной камеры, привели к необходимости пересмотра схемы и прежде всего выщелачивания хлорным железом.  [c.360]

Наиболее удобным и широко применяемым методом определения цвета масел, масляных лаков и растворов смол является метод сравнения образца с эталонами Гарднера 1933 г. Эталоны состоят из различных смесей растворов хлорного железа, хлористого кобальта и соляной кислоты. Из этих о.месей составляется набор 18 стандартных растворов различных цветов, которыми заполняются стеклянные пробирки. Эти пробирки имеют такие же размеры, как пробирки для определения вязкости по описанному выше методу пузырька воздуха, поэтому для определения цвета можно пользоваться тем же образцом, который применялся для определения вязкости. Пробирки со стандартными растворами располагаются в ряд в специальном штативе, и образец с испытуемым раствором последовательно устанавливается между двумя смежными стандартными растворами. Когда цвет образца становится одинаковым с цветом раствора в одной из стандартных пробирок, отмечается номер этой пробирки. Этот номер и характеризует цвет раствора по эталону Гарднера. Есл и цвет образца лежит между цветами двух эталонных пробирок, его обозначают двумя омерами, например 4—5, 10—И и т. д. В стандартах на торговые лаки и растворы смол указываются интервалы или допуски цветов, вследствие чего в стандартах цвета могут обозначаться 4—8, 7—10 и т, д. Это означает, что цвет продукта может изменяться от значения 4 до значения 8- Набор эталонных растворов описывается в ASTM, раздел D154-47, а также в книге Гарднера и Сварда II], Следует помнить, что цвет масел, масляных лаков или растворов смол, имеющий существенное значение, не всегда определяет цвет пленки после ее высыхания или в процессе ее старения. Исходный цвет двух пленок может быть одинаковым, а в процессе старения цвет одной пленки может изменяться в большей степени, чем другой.  [c.688]

На установку поступает вода озера Монча, отвечающая по физико-химическим показателям требованиям ГОСТ, но имеющая бактериальное загрязнение. Применявшийся раньше метод обеззараживания этой воды < путем хлорирования вызывал ряд затруднений по до-, ставке, хранению и дозированию хлорной извести. В связи с токсичностью хлора и хлорной извести обслуживание процесса хлорирования требовало большого количества персонала, работающего в противогазах и спецодежде. После хлорирования снижались вкусовые качества воды, долгое время сохранялся запах хлора. С пуском в эксплуатацию бактерицидной установки значительно облегчен труд обслуживающего персонала. Вода озера Монча после ее облучения полностью сохраняет хорошие природные вкусовые качества.  [c.203]


При иопользоваийи в качестве источника водоснабжения по-Ёерх ностных вод (реки, водохранилища, озера), особенно на крупных водоочистных станциях, где хлорирование являете технологическим процессом очистки воды (предварительное Хлорирование в целях снижения цветности, улучшения процессов коагулирования и др.), применение метода обеззараживания осветленной воды бактерицидными лучами может быть рекомендовано только на основании технико-экономических расчетов и, обоснования невозможности попользовать ймеюгцееся хлорное хозяйство для целей обеззараживания воды. Г ., ,l, .  [c.225]

С помощью электронной моделируюш ей установки непрерывного действия можно получить динамические характеристики MB У по различным параметрам при различных возмуш ениях, а также оценить влияние различных конструктивных и режимных параметров на динамические свойства выпарной установки. Возможно моделирование различных выпарных установок, выполненных по разным схемам. В частности, по описанной методике может быть выполнено математическое моделирование выпарной установки хлорного завода (схема на рис. 20), либо моделирование переходных процессов в промышленных опреснительных установках и др. Электронные модели-руюш ие установки весьма эффективны при моделировании изменений коэффициентов теплопередачи и производительности установки во времени в связи с накипеобразованием. Они могут также использоваться для моделирования режимов работы аппаратов периодического действия.  [c.107]

В МЭИ под руководством Д. В. Радуна и А. Г. Левачева проводятся работы по применению управляющих вычислительных машин (УВМ) для оптимального управления выпарной станции хлорного завода, схема которой и краткое описание приведены в гл. III. Предлагается следующая структура системы управления. Автоматические регуляторы стабилизируют на заданном уровне ряд параметров выпарной станции уровни в аппаратах, концентрацию раствора на выходе первой и второй стадий, давление пара в греющей камере и вакуум в конденсаторе. На УВМ через определенные интервалы времени вычисляются в соответствии с алгоритмом управления оптимальные в заданной ситуации величины управляющих воздействий.При этом осуществляется воздействие на уставки стабилизирующих регуляторов, которые выводят выпарную установку на оптимальный режим. Одновременно УВМ регистрирует необходимые показатели процесса. В случае неисправности вычислительной машины предлагается предусмотреть автоматическое отключение УВМ с сохранением уставок стабилизирующих регуляторов, которые они имели до повреждения УВМ.  [c.203]


Смотреть страницы где упоминается термин Хлорный процесс : [c.312]    [c.55]    [c.92]    [c.173]    [c.174]    [c.254]    [c.72]    [c.7]    [c.720]    [c.296]    [c.259]   
Смотреть главы в:

Металлургия благородных металлов  -> Хлорный процесс



ПОИСК



Технологический процесс хлорного способа термохромирования

Хлорен —



© 2025 Mash-xxl.info Реклама на сайте