Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сурьма-кремний

В подобных термоэлементах могут использоваться различные металлы серебро, железо, теллур, их сплавы, константан, сурьмяно-висмутовые сплавы и полупроводниковые материалы, такие как сурьма, кремний, селен и др. [801.  [c.233]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


В настоящее время для легирования аморфного кремния (и германия) кроме фосфора и бора используют также примеси мышьяка. сурьмы, индия, алюминия и т. д. При этом прямым методом было установлено, что координационное число атома мышьяка в аморфном кремнии, так же как и в кристаллическом, равно четырем. Кроме того, для получения слоев -типа в аморфный кремний с низкой плотностью состояний вводят атомы щелочных элементов, которые проявляют донорные свойства, находясь в междоузлиях.  [c.366]

Примеси мышьяка, сурьмы, кадмия, железа, никеля, кобальта, свинца, висмута, золота, галлия, кремния и цинка при содержании их до 1% мало понижают проводимость алюминия в отожженном состоянии, что объясняется образованием интерметаллидных ([заз. Примеси меди, серебра, магния влияют на проводимость в большей степени, а титан, ванадий, хром и марганец резко снижают ее, последнее объясняется образованием твердых растворов. Поэтому любая термическая обработка, повышающая концентрацию растворенного компонента, будет уменьшать проводимость.  [c.240]

Технические полупроводники могут быть разбиты на четыре группы 1) кристаллы с атомной решеткой (графит, кремний, германий) и с молекулярной решеткой (селен, теллур, сурьма, мышьяк, фосфор) 2) различные окислы меди, цинка, кадмия, титана, молибдена, вольфрама, никеля и др. 3) сульфиды (сернистые соединения), селениды (соединения с селеном), теллуриды (соединения с теллуром) свинца, меди, кадмия и др. 4) химические соединения некоторых элементов третьей группы периодической таблицы элементов (алюминий, галий, индий) с элементами пятой группы (фосфор, сурьма, мышьяк) и др. К числу полупроводников относятся некоторые органические материалы, в частности полимеры, имеющие соответствующую полупроводникам по ширине запрещенную энергетическую зону. Особенности свойств некоторых органических полупроводников, как гибкость, возможность получения пленок при достаточно большой механической прочности, заставляют считать их перспективными.  [c.276]

К числу существенных недостатков германиевых вентилей относится невысокая рабочая температура рабочий диапазон от — 50 до + Ж С при длительном воздействии температуры выше + 60° С в них проявляется тепловое старение, приводящее к ухудшению электрических параметров при низких температурах наблюдается значительное понижение обратного сопротивления. Кремниевые выпрямители могут работать при температуре до -1- 200° С. С точки зрения работы при высоких частотах кремниевые диоды имеют перед германиевыми преимущества, заключающиеся в большей чувствительности к слабым сигналам (пороговое напряжение у первых 0,01 В, у вторых от 0,1 до 0,25 В). Характеристики кремниевых вентилей, возможность получения больших выпрямленных мощностей в установках малых габаритов, особенно при использовании искусственного охлаждения, делают их исключительно прогрессивными. Поскольку кремний и германий являются элементами IV группы таблицы Менделеева, дырочная проводимость в них создается примесями элементов третьей группы, а электронная — элементов пятой группы. Для кремниевых полупроводников часто применяют алюминий, бор, для германиевых — индий в качестве акцепторной примеси мышьяк и сурьма (элементы V группы) — в качестве донорных примесей.  [c.284]


К простым полупроводникам относятся германий, кремний, селен, теллур, бор. углерод, фосфор, сера, сурьма, мышьяк, серое олово, иод.  [c.267]

Температура испытания. С ростом температуры пластичность всех металлов повышается (прочность понижается) даже такие нетипичные металлы (полуметаллы), как сурьма (выше 300°С) и висмут (выше 100°С), пластичны. Вблизи точки плавления пластичны типичные неметаллы, например кремний, германий, сера и даже алмаз. Природная пластичность чистых металлов при низких температурах меньше, но она достаточна для обработки их давлением. У чистых металлов нет температурных зон хрупкости, горячеломкости, хладноломкости.  [c.191]

Бронза — сплав меди с оловом, свинцом или алюминием с добавками некоторых других элементов (сурьма, железо, кремний, сера и др.), содержащихся в сотых долях процента.  [c.241]

По влиянию на растворимость углерода в аустените и положению эвтектической точки висмут подобен хрому, кремнию и сурьме, но оказывает более слабое воздействие.  [c.71]

При введении в такие электролиты частиц корунда, кремния (аморфного) или сурьмы получают покрытия с повышенной твердостью по сравнению с свинцовыми покрытиями из чистого электролита. Так, электролизом из фенолсульфонового электролита при 40 °С, pH =1,6 и i k=100 А/м2 получали покрытия с содержанием частиц второй фазы 0,3—3,7% (масс.) и твердостью 90— 110 МПа.  [c.212]

Корунд М20 (С=200 кг/м ) Кремний (С=150 кг/м ). . Сурьма (С = 50 кг/м ). . .  [c.213]

Покрытия, содержащие корунд М20, имели светлосерый цвет с синеватым оттенком покрытия с кремнием-светло-серый цвет с серебристым оттенком покрытия с сурьмой имели темный цвет.  [c.213]

Надо только организовать теперь движение этих электронов, заставить их двигаться в одном направлении, и тогда пойдет электрический ток. Для этого на пластинку кремния накладывают другую пластинку — кремния с примесью сурьмы. Этот слой имеет удивительное свойство он пропускает электроны только в  [c.174]

В ФРГ. В начальный период применения алюминиевых антифрикционных сплавов в основу изыскания состава сплавов был положен принцип строения подшипниковых материалов—твердые частицы, вкрапленные в более мягкую и пластичную основу. Так, фирмой Юнкере для авиационных двигателей применялись сплавы с никелем, а для легких тракторных двигателей сплавы с медью (2—8% Си). Сплавы Альва с сурьмой и добавками олова, свинца и графита — применялись для различных условий работы. Для изготовления втулок фирма Карл Шмидт применяет вместо бронзы сплавы, содержащие кремний, по составу аналогичные поршневым. По сравнению с бронзой эти сплавы более теплоустойчивы и износостойки. Однако при разрывах масляной пленки они подвержены задирам.  [c.123]

Алюминиевый подшипниковый сплав в основном состоит из алюминия ( 90%) с присадкой олова (до 8о/о), никеля (до 8%) и небольших количеств других металлов, как, например, меди, цинка, марганца, кремния, железа, магния и сурьмы. Присутствие в сплаве сурьмы повышает устойчивость против коррозии. Твёрдость обработанной поверхности 35— 150/Уд в зависимости от состава и термообработки предельное удельное давление— 650—800 Материал цапфы — сталь и чугун.  [c.635]

Алюминий—магний-титан, хрупкая Алюминий — медь — титан Алюминий — кремний — кобальт Алюминий—магний-бериллий, хрупкая Олово — никель — сурьма, хрупкая  [c.192]

При высоких температурах графит раскисляет почти все окислы металлов. С железом, вольфрамом, молибденом, титаном, бором и кремнием он образует карбиды. Медь, серебро, свинец, олово, сурьма не способны образовать карбиды.  [c.407]

Кривые на рис. 14 рассчитаны по формуле (39) для углеродистых сталей при т = 4,0, Мг = 1,9 и о = 0,6 мм для технического алюминия М2 = 2,2, т 2,5 и 0 = 0,5 мм для однофазных сплавов с медью, марганцем и кремнием при т 2,5, о = 0,5 мм м М2 = 2,2 1,6 и 1,3, соответственно для двухфазных сплавов алюминия с никелем при т = 3,0, М2 = 3,0 и ( 0 = 0,25 мм с сурьмой при т = 3,0, ТИз = 1,8 и о = 0,5 мм (значения т определены в работе [3]).  [c.175]

Кремний Алюминий Магний. Кальций. Железо. Ванадий. Свинец. Серебро. Сурьма. Висмут. Мышьяк.  [c.98]

Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]


Сурьма Кремний (МО- ) Удаление сурьмы в виде три-бромида Фотоме1 рический 14  [c.13]

Наконец, перечислим металлы, которые не перешлп в сверхпроводящее состояние вплоть до указанных в скобках температур. Золото (0,05° К), медь (0,05° К), висмут (0,05° К), магнии (0,05° К) и германий (0,05° К) были исследоваиы Кюрти и Симоном [260] кремний (0,073° К), хром (0,082° К), сурьма (0,152° К), вольфрам (0,070° К), бериллий (0,064° К) и родий (0,086° К) исследовались Алексеевским и Мигуновым [315] литий (0,08° К), натрий (0,09° К), калий (0,08° К), барий (0,15° К), иттрий (0,10° К), церий (0,25° К), празеодим (0,25° К), неодим (0,25°К), марганец (0,15° К), палладий (0,10° К), иридий (0,10° К) и платина (0,10° К) изучались Гудменом [316] кобальт (0,06° К), молибден (0,05° К) и серебро (0,05° К) были исследованы Томасом и Мендозой [317].  [c.589]

В зависимости от химического состава стеклообразные материалы могут быть диэлектриками, полупроводниками и проводниками. Типичными представителями стеклообразных полупроводников являются халькогенидные стеклообразные полупроводники (ХСП), которые представляют собой сплавы халькогенов — элементов шестой группы периодической системы (серы 5, селена 5е или теллура Те) с элементами пятой (мышьяк Аз, сурьма 5Ь) или четвертой (кремний 51, германий Ое) групп. К этим же материалам относят элементарный халькоген — стеклообразный селен.  [c.12]

Полупроводниковые соединения А " В являются ближайшими аналогами кремния и германия. Они образуются в результате взаимодействия элементов II1-6 подгруппы периодической таблицы (бора, алюминия, галлия, индия) с элементами V-6 подгруппы (азотом, фосфором, мышьяком, сурьмой). Соединения А В принято классйфицирбвать по мётм Соответственно раз-  [c.291]

Полупроводники представляют собой обширную группу веществ, занимающих по величине удельной объемной проводимости промежуточное положение между диэлектриками и проводниками. Возможность получения различного характера электроироводности — электронной и дырочной — и управления ею составляет одну из важных отличительных особениосте полупроводников. В периодической системе имеется 12 элементов, обладающих полупроводниковыми свойствами это так называемые элементарные или простые полупроводники (основной состав полупроводника образован атомами одного химического элемента). Такими элементами являются в III группе — бор в IV группе — углерод, кремний, германий, олово (серое) в V группе — фосфор, мышьяк, сурьма в VI группе —сера, селен, теллур в VII группе — йод. Достаточно отчетливо можно представить общие закономерности и особегнюсти элементарных полупроводников, рассматривая такие полупроводники, как германий и кремний ( 13.5 и 13.6).  [c.171]

Для изготовления полупроводниковых приборов важное значение имеют монокристаллы кремния, весьма тщательно очищенные от примесей. Температура плавления кремния 1420 0. Собственная проводимость кремния yi = = 3-10 1/ом-см отвечает концентрации носителей п,- = 10 Мсм запрещенная зона W =l,l2 эв (табл. 13.1). Получение дырочной проводимости достигается введением акцепторов — элементов III группы (алюминий, бор). Электронный кремний получают при введении доноров — элементов V группы (л1ышьяк, сурьма, фосфор). Подвижность электронов и дырок = = Г 400сж /вХсе/с, Up = 500 см"1в-сек диэлектрическая проницаемость е = 12,5. Энергия ионизации доноров имеет небольшие значения для As 1Гд = 0,049 эв, для Sb энергия 1 д = 0,039 эв, для Р 1 д =  [c.181]

Карбидами называют соединения углерода с другими элементами. Широкое применение имеет карбид кремния Si —карборунд—ио-ликристаллический полупроводник. Карборунд получают в электрических печах при температуре 2000° С из смеси двуокиси кремния SiOa и угля. Кристаллы карборунда гексагональной структуры в чистом виде бесцветны, но благодаря примесям технический материал имеет светло-серую или зеленоватую окраску. При нормальных условиях энергия запрещенной зоны = 2,86 эв. Характер электропроводности определяется составом примесей или отклонением от стехио-метрического состава Si . Электронная проводимость получается при избытке Si, а также при наличии примесей из V группы — фосфора, мышьяка, сурьмы, висмута или азота. Дырочная проводимость достигается при избытке С и наличии примесей элементов II группы (Са, Mg) и III группы (А1, In, Ga, В). При введении примесей изменяется также окраска карборунда. Подвижность носителей низкая гг = = 100 см 1в-сек. Up = 20 см /в-сек. Порошкообразный карборунд применяют для изготовления нагревателей электрических печей с температурой до 1500° С. Кроме того, из него изготовляют нелинейные объемные резисторы — варисторы, в которых значение R падает с ростом приложенного напряжения (рис. 14.2). Нелинейность таких резисторов резко вырастает при одновременном введении небольших примесей алюминия (IM группа) и азота (V группа), вблизи точки перехода  [c.188]

Если структурные составляющие значительно различаются но твердости, как, например, ррит и цементит в сплавах железо — углерод, алюминиевый твердый раствор и элементарный кремний в легких сплавах, богатая сурьмой фаза и богатая свинцом или оловом основа в подшипниковых сплавах, то уже при механической шлифовке и полировке образуется рельеф.  [c.15]

Чедик [9] рекомендует реактив 3, так называемый раствор СР-4, для изучения процесса пайки по границам зерен и фронту кристаллизации в системе германий—индий. В этой работе также описано исследование сплавов германий—серебро, германий— золото, германий—висмут, германий—медь, германий—серебро— висмут, германий—золото—индий, германий—индий—медь, а также кремний—золото и кремний—золото—сурьма.  [c.294]

Ковалентная связь возникает между атомами элементов групп IVB, VB, V1B и VIIB системы Д. И. Менделеева (рис. 1.13). Все они кристаллизуются по правилу 8 — N каждый атом окружен 8 — N ближайшими соседями, где М — номер группы, к которой принадлежит элемент. Объясняется это тем, что в валентной оболочке элемента группы N имеется 8 — N орбиталей, на которые могут быть приняты электроны соседних атомов. Так, алмаз, кремний германий, серое олово являются элементами IV группы. Поэтому они имеют тетраэдрическую решетку, в которой каждый атом окружен четырьмя ближайшими соседями, как показано на рис. 1.13, а. Мышьяк, фосфор, висмут и сурьма принадлежат к V группе периодической системы. Эти элементы имеют слоистую решетку, причем в плоскости слоя каждый атом имеет три ближайших соседа (рис. 1.13, б) слои связаны друг с другом слабыми силами Ван-дер-Ваальса. У селена и теллура, принадлежащих к VI группе, атомы образуют длинные цепочки так, что каждый имеет два ближайших соседа (рис. 1.13, в) цепочки связаны между собой силами Ван-дерт Ваальса. Наконец, в решетке йода, принадлежащего к VII труп-  [c.19]


Атомная батарейка. На тоненькую пластинку строн-циЯ 90 (а) положена пластинка кремния (б), а еще дальше кремний с примесью сурьмы (г). Излучаемые стронцием электроны вызывают лавину электронов в кремнии (в), но полупроводниковый слой (г) пропускает их только в одну сторону. И возникает электрический ток  [c.174]

Основными элементами сплавов являются сурьма, железо, медь, кремний и олово, образующие с алюминием гетерогенные структуры. В первых трех случаях эти структуры состоят из химических соединений высокой твердости AlSb, AIjFe, AIj u и мягких эвтектик для сплавов с кремнием твердым включением является чистый кре. пшй. Бинарные сплавы алюминий — олово не содержат твердых включений  [c.114]

Углерод О Натрий Кремний Spi Фосфор Р32 Сера S33 Калий К<2 Кальций Са -Скандий S e Хром Сг"1 Железо Fe s Железо Кобальт Со Никель NiG Медь uS4 Цинк Zn Германий Ge"i Мышьяк As Селен Se j Цирконий Zr js Олово Sn i Сурьма Sbl  [c.70]

Примеси мышьяка, сурьмы, олова, кремния, свинца и фосфора сильно снижают механические и технологические свойства алюминн-Дтнн. % са  [c.115]

Расплавление твёрдых бериллия и меди в тигле. Сначала загружают бериллий, затем флюс и после этого медь Введение отдельными порциями кремния или купросилиция (сплав меди с кремнием) в расплавленную и перегретую медь при тщательном перемешивании Введение отдельными порциями сурьмы в расплавленную под слоем древесного угля медь Введение измельчённого марганца в расплавленный под слоем флюса и перегретый до 850—900 С магний  [c.192]

К днамагнетикам относятся инертные газы, золото, цинк ртуть, висмут, галлий, сурьма, иод, графит, фосфор, сера, кремний ряд органических соединений, сверхпроводники (ряд металлов при очень низких температурах 1—10°К) и другие вещества.  [c.129]

Образует ограниченные твердые растворы с бериллием, бором, углеродом, азотом, кислородом, алюминием, кремнием, фосфором, серой, марганцем, кобальтом, никелем, медью, цин-JJOM, мышьяком, цирконием, ниобием, палладием, серебром, кадмием, оловом, свинцом, сурьмой, гафнием, танталом, золотом, лантаном, церием, висмутом, ураном, рением.  [c.13]

Как ВИДНО из таблицы, электролитический хром при йодид-ном рафинировании очищается от кремния, титана, меди, железа, азота, кислорода, водорода и углерода, в то время как содержание алюминия, свинца, висмута и кадмия остается после рафинирования практически на том же уровне. В рафинированном металле полностью отсутствовали марганец, никель, ванадий, молибден, вольфрам, мышьяк, сурьма и бор (в исходном металле эти примеси не определяли). Металлический хром после йодид-ного рафинирования пластичен в литом состоянии (удлинение при растяжении 9—16%).  [c.160]


Смотреть страницы где упоминается термин Сурьма-кремний : [c.230]    [c.396]    [c.19]    [c.34]    [c.230]    [c.461]    [c.325]    [c.97]    [c.398]    [c.43]    [c.268]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Сурьма-кремний



ПОИСК



Кремний

Сурьма



© 2025 Mash-xxl.info Реклама на сайте