Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие уравнения для потока реальной жидкости

ОБЩИЕ УРАВНЕНИЯ ДЛЯ ПОТОКА РЕАЛЬНОЙ ЖИДКОСТИ  [c.463]

В общем случае формулу для подсчета гидравлических потерь на участке потока между произвольно выбранными сечениями 1 — 1 и 2—2 можно получить из уравнения Бернулли для потока реальной жидкости (3.14)  [c.27]

Тогда, обозначая потери напора в общем виде йтр, имеем уравнение Бернулли для потока реальной жидкости при плавно изменяющемся движении  [c.89]


При движении жидкости в трубах, каналах, лотках, реках и других водотоках происходят затраты энергии потока на преодоление сопротивлений движению (потери напора). Эти потери напора в общем виде могут быть получены из уравнения Бернулли для потока реальной жидкости при плавно изменяющемся движении  [c.91]

Рассмотрим общий случай (см. рис. 6-1), когда поверхность жидкости в резервуаре, из которого происходит истечение, находится под внешним давлением ро. а давление в газовой среде, куда вытекает струя, равно р. Составим уравнение Бернулли для двух сечений потока реальной жидкости. При этом следует помнить, что уравнение Бернулли справедливо лишь для сечений с плавно изменяющимся движением, одним из признаков которого являются параллельность отдельных струек и малая их кривизна, давление при плавно изменяющемся движении распределяется по гидростатическому закону.  [c.133]

Определение сил трения. Уравнение Д. Бернулли можно использовать при расчете движения реальной жидкости только тогда, когда имеется возможность количественного учета потерь напора Л,с. Для выработки общего метода учета потерь напора в потоке реальной жидкости выявим зависимость сил трения от различных факторов. Силы трения при движении турбулентного потока зависят от скорости V, размеров потока 7 , динамической вязкости д., плотности жидкости р и расчетных выступов шероховатости е. Пользуясь методом размерности, можно установить общий вид зависимости силы трения т от перечисленных факторов  [c.84]

В примере (рис. 6.7) уравнение Бернулли позволило определить приращение давления только в одной точке обтекаемого контура. В остальных точках обтекаемого контура получить давление, действующее на тело, из уравнения Бернулли нельзя. Для определения эпюры давлений р (рнс. 6.8) надо решать общие уравнения движения жидкости с учетом ее взаимодействия с твердым телом. К сожалению, получить теоретически аэродинамические силы, особенно с учетом реальных свойств жидкости или газа (сжимаемости, вязкости) и режимов обтекания, для разных профилей сечений стержня не представляется возможным. Поэтому основную роль при определении аэродинамических сил имеют экспериментальные исследования, которые полностью подтверждают сделанный качественный вывод о том, что аэродинамические силы зависят от квадрата скорости потока.  [c.237]


Уравнение Лапласа (4) принимается за основу всего аналитического материала второй части, где рассматриваются проблемы течения жидкостей при установившемся состоянии. Это уравнение вытекает из допущения, что жидкость совершенно не сжимаема. Оно дает для реальных жидкостей в общем довольно хорошее приближение, за исключением тех случаев, когда жидкость обладает ненормально высокой сжимаемостью или когда размеры потока весьма велики (см. гл. X, п.1). С другой стороны, можно рассматривать применение уравнения (4), как дающее только формальное упрощение проблемы движения реально сжимаемой жидкости. Если это только требуется, можно получить распределение плотности жидкости у для установившегося движения сжимаемой жидкости из выражения для Ф или р, выведенного для системы несжимаемой жидкости той же геометрии, простой интерпретацией Ф или р, как у, при одном условии, что пренебрегают влиянием силы тяжести. При этом граничные условия (гл. Ill, п. 5) выражаются в единицах гранично плотности или массы потока.  [c.118]

Отсутствие точного решения нелинейного уравнения (2), гл. XI, п. 1, для проверки возможной применимости сделанного допущения к системам газового потока не может явиться, повидимому, основанием, почему допущение о непрерывной последовательности установившихся состояний не должно давать такого же хорошего представления реальных условий потока при движении газа, как и при течении сжимаемой жидкости. Наоборот, благодаря более высоким градиентам давления в системе газового потока у эксплоатационной скважины и соответственно более низким градиентам на внешнем контуре, по сравнению С системой сжимаемой жидкости, при равных общих перепадах давления ошибка, связанная с экстраполяцией логарифмического распределения давления, при стационарном режиме до замкнутого внешнего контура должна быть меньше на этом основании для первого случая TIO сравнению со вторым . Кроме того, длительный период основного переходного этапа при последовательности стационарных состояний для систем газового потока устанавливается гораздо быстрее. Кратко-  [c.586]

В некоторых случаях анализ двумерных быстро изменяющихся потоков со свободной поверхностьК) можно выполнить в предположении о безвихревом характере движения. Если движение жидкости начинается из зоны (или СОСТОЯ.НИЯ) покоя и пограничные слои, развивающиеся на твердых границах, заполняют малую часть от общего пространства, занятого текущей жидкостью, то это предположение справедливо и для реальных жидкостей. Поскольку движение является потенциальным, то при рассмотрении двумерных течений задача сводится к решению уравнения Лапласа (6-53). Простым  [c.373]

В энергетической трактовке сумма трех удельных энергий z + р/у Н--Ь 2/2g = е. есть удельная механическая энергия. Иногда при течении реальной жидкости потери удельной энергии оказываются пренебрежимо малыми. При этом изменение параметров течения происходит так, как если бы жидкость была невязкой, т. е. идеальной. В общем виде уравнение Бернулли для эле.ментарной струйки идеальной жидкости получается из формулы (45), если положить / с = 0. Чтобы пользоваться уравнением энергии в том или ином виде для целого потока, выберем на участке слабой деформации сечение, нормальное к оси потока. Такое сечение является практически плоским. Выделим в пределах указанного сечения сечение некоторой элементарной струйки площадью dw, удельная механическая энергия для которой определяется выражением е = 2 + р/у + u l2g. Чтобы найти полную механическую энергию с1Ем в сечении струйки, у.множпм ее удельную энергию на весовой расход OG = ud  [c.53]

Перейдем к более общей постановке задач о движении жидкости в пористой среде, подчиняющемся закону Дарси, и рассмотрим трехмерное движение. Пусть Ых, иу и иг будут компонентами скорости фильтрации вдоль координатных осей х, у ц г. Под компонентами скорости фильтрации вдоль нормали к какой-либо площадке будем, естественно, понимать отношение фильтрационного расхода, протекающего через эту площадку, к ее площади. Как и в гидравлической постановке, здесь не учитывается микроструктура потока в масштабе отдельных частиц среды, а изучается непрерывное поле скоростей, допускающее рассмотрение сколь угодно малых ее объемов. Представим себе фиктивную жидкость, заполняющую все пространство, включая и объем твердого скелета среды, и движущуюся со скоростями их, иу и г- Рзспределение давлений в ней должно соответствовать действительному распределению давлений в реальной жидкости. По аналогии с общими уравнениями гидродинамики составим уравнения движения жидкости в пористой среде, ограничившись для простоты случаем установившегося движения. Эти уравнения впервые были получены И. Е. Жуковским (1889 г.).  [c.466]


В дальнейщем в целях ориентировочного предварительного изучения общей задачи, содержащей вполне корректные предположения, в качестве основного течения рассматривается идеализированный случай так называемого плоского течения при наличии критической точки и исследуется его устойчивость. Это идеализированное течение описано точным решением уравнений Навье—Стокса для перпендикулярного обтекания бесконечной плоской стенки. Указанное течение можно аппроксимировать на реальное течение в окрестности передней критической точки цилиндра. Однако при этом следует иметь в виду появление известных вырождений задачи. В то же время нельзя получить критическое число Рейнольдса, если рассматривать только уравнение Навье — Стокса. Кроме того, при значительном удалении от критической точки и возрастании скорости состояние потока во всей массе жидкости можно считать состоянием как бы на бесконечности тогда возмущения, налагаемые на поток, оказывают относительно малое влияние. Таким образом, подобное предварительное исследование дает лишь качественное объяснение возникновения неустойчивости потока вблизи критической точки.  [c.261]

Таким образом, одна из начальных задач динамики гидро- и пневмосистем состоит в определении границ использования квазистационарных значений коэффициентов в уравнениях движения реальных рабочих сред. После получения таких границ, когда это необходимо, должны быть определены действительные значения коэффициентов. Указанная задача пока не имеет общего решения из-за недостаточности экспериментальных данных по характеристикам неустановившихся движений реальных сред и из-за сложности математического описания этих движений. При неустановившемся движении жидкостей и газов в трубах с помощью ряда допущений удается в достаточном для технических приложений виде получить расчетные зависимости, раскрывающие основные особенности неустановившихся потоков, и найти коррективы к квазистационар-ным значениям коэффициентов уравнений. Изучение этих особенностей помогает правильному пониманию происходящих в системах неустановившихся гидродинамических процессов, в связи с чем в некольких следующих параграфах они рассмотрены более подробно.  [c.186]


Смотреть страницы где упоминается термин Общие уравнения для потока реальной жидкости : [c.464]    [c.170]   
Смотреть главы в:

Справочник машиностроителя Том 2  -> Общие уравнения для потока реальной жидкости



ПОИСК



283 — Уравнения жидкости

Жидкость реальная

Жидкость реальная-—Уравнение для

Жидкость реальная-—Уравнение для потока

Общие уравнения

Общие уравнения движения потока реальной несжимаемой жидкости

Поток жидкости

Реальный газ

УРАВНЕНИЯ для потока реальной жидкост

Уравнение для потока



© 2025 Mash-xxl.info Реклама на сайте