Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примесные уровни в полупроводниках

ПРИМЕСНЫЕ УРОВНИ В ПОЛУПРОВОДНИКАХ  [c.156]

Рис. i. Примесные уровни в полупроводнике — дно зоны Рис. i. Примесные уровни в полупроводнике — дно зоны

Как мы увидим позднее (в гл. 28), наличие больших диэлектрических проницаемостей весьма существенно для теории примесных уровней в полупроводниках.  [c.177]

Граничные условия Боровский радиус I 79 для примесного уровня в полупроводнике II 201  [c.393]

Первое обстоятельство, которое надо отметить в связи с методом сильной связи, состоит в том, что он должен быть непригодным также в случае атомного газа высокой плотности. Характерным масштабом длины при этом будет не радиус каждой атомной потенциальной ямы, а характерный размер, г , входящий в каждую волновую функцию г1)а. В случае примесных уровней в полупроводнике, например, это была бы длина порядка нескольких боровских радиусов ад для водородоподобных волновых функций 2.15). Когда длины и г а оказываются сравнимыми, в выражении для ТГ (г) появляется множество сингулярностей, связанных с двухатомными , трехатомными и более сложными кластерами соответствующие им уровни связанных состояний будет сливаться, образуя молекулярные уровни, так что их уже нет смысла рассматривать по отдельности (рис. 13.2).  [c.557]

В полупроводнике р-типа электроны из валентной зоны могут переходить на примесные уровни. В результате в валентной зоне образуются незаполненные, т. е. вакансионные электронные состояния, называемые дырками. Дырки ведут себя как положительно заряженные частицы. Соответственно этому носителями электричества будут служить дырки.  [c.602]

При освещении полупроводника концентрация свободных носителей заряда в нем может возрасти за счет носителей, возбужденных поглощенными кванта-.ми света. При оптическом возбуждении электронов из валентной зоны в зону проводимости возникает пара свободных носителей - электрон и дырка. Если за счет света происходит переход электрона из валентной зоны на примесные уровни или с примесных уровней в зону проводимости, образуются свободные носители одного знака - дырки или электроны. В соответствии с увеличением концентрации свободных носителей заряда в полупроводнике за счет облучения его светом возрастает и его удельная проводимость  [c.70]

Примесное поглощение. В примесных полупроводниках под действием света может происходить переброс электронов с примесных уровней в зону проводимости и из валентной зоны на примесные уровни, расположенные в запрещенной зоне (рис. 12.6). Такое поглощение света называют примесным. Граница этого поглощения сдвинута в область длинных волн тем сильнее, чем меньше энергия соответствующего перехода.  [c.323]


Сильное влияние примесей на проводимость полупроводников вызвано изменением энергетического спектра. При этом возможно два случая 1) если примесь представляет собой химический элемент более низкой группы периодической таблицы, чем сам полупроводник, то он создает дополнительные незанятые энергетические уровни, близкие к уровням занятой зоны 2) если примесью является элемент более высокой группы периодической таблицы, то она создает дополнительную занятую энергетическую зону, близкую к основной незанятой зоне. В первом случае примесь называют акцепторной—принимающей, во втором—до-норной — дающей. Смысл этих терминов заключается в следующем при наличии акцепторной примеси благодаря малой ширине запрещенной зоны между основной занятой зоной и незанятой зоной примесей легко осуществляется переход электронов из занятой зоны в зону примесей. В результате этого в занятой зоне образуется дырка , перемещение которой соответствует перемещению положительных носителей тока поэтому такую электропроводность называют дырочной , или электропроводностью типа р (положительной — позитивной). При наличии донорной примеси электроны из примесной зоны легко переходят в основную зону проводимости, создавая эффект обычной электронной электропроводности типа п (отрицательной — негативной). Схемы энергетических уровней в полупроводнике чистом, без примесей, а также с акцепторной и донорной примесью показаны на рис. 7-1,  [c.276]

Энергия ионизации при образовании дырки мала (ю сравнению с германия или кремния. Энергетический уровень, образующийся вследствие наличия примеси, показан на рис. 5-1-5,б, В этом случае образуется примесный незаполненный уровень, расположенный на 0,01—0,05 эВ выше верхней границы заполненной зоны. Уже при температуре, близкой к нормальной, незаполненный примесный уровень захватывает электроны из заполненной зоны, при этом в последней образуется дырка, обусловливающая проводимость. Примесный уровень в полупроводниках п-типа имеет смысл назвать уровнем, который снабжает зону проводимости электронами, и потому его называют донорным уровнем, В противоположность такому уровню незаполненный примесный уровень, который захватывает электроны из заполненной зоны, носит название акцепторного уровня. Полупроводники, подобные показанному на рис. 5-1-5, называют дырочными полупроводниками (р-типа), так как носителями заряда, обусловливающего проводимость, служат дырки—места с положительным зарядом.  [c.311]

Статическая диэлектрическая проницаемость ковалентных и ковалентно-ионных кристаллов т. 2, стр. 177 Сегнетоэлектрические кристаллы т. 2, стр. 180 Ширина запрещенной зоны полупроводников т. 2, стр. 188 Примесные уровни в кремнии и германии т. 2, стр. 203  [c.390]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]

Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]


Нас, естественно, будет интересовать только излучательная рекомбинация, которая в полупроводнике может происходить в результате межзонных переходов (стрелка 1 на рис. 35.22) и переходов из зоны на примесный уровень (стрелка 2) или через оба примесных уровня (стрелка 3).  [c.296]

В отличие от металлов полупроводники имеют довольно сложный спектр оптического поглощения. В металле фотоны поглощаются электронами проводимости, совершающими переходы внутри энергетической зоны. Поэтому спектр поглощения металла непрерывен металлы поглощают излучение любой частоты. В полупроводниках фотоны могут поглощаться электронами валентной зоны (с последующим переходом в зону проводимости или на примесные уровни, находящиеся внутри запрещенной зоны), электронами на примесных уровнях (с переходом в зону проводимости или на другие примесные уровни), электронами проводимости (с последующими внутризонными переходами). Переходам электронов из валентной зоны в зону проводимости отвечает так называемая полоса собственного поглощения полупроводника она характеризуется наиболее высоким коэ-ф-фициентом поглощения. Частота о) р, соответствующая  [c.164]

Квантовый выход внутреннего фотоэффекта. Предположим теперь, что полупроводник освещается монохроматическим светом, частота которого выше пороговой частоты для внутреннего фотоэффекта. Последняя определяется шириной запрещенной зоны в собственных полупроводниках и энергией ионизации донорных или акцепторных примесей в примесных полупроводниках. При поглощении фотонов электронами валентной зоны или примесных уровней будут происходить соответствующие квантовые переходы, приводящие к образованию дополнительных (неравновесных) носителей заряда, которые и обусловливают фотопроводимость.  [c.176]

Воспользуемся полученными выще зависимостями для вывода распределения электронов по энергиям в собственном полупроводнике, в запрещенной зоне которого нет примесных уровней. Ширину запрещенной зоны обозначим через АЕ, а начало отсчета энергии совместим с дном зоны проводимости (рис. 41). Пусть Ne(E)dE — число разрешенных  [c.110]

Если атомы примеси имеют меньший по сравнению с основными заряд ядра, то образуется полупроводник р-типа в нем расщепляется валентная зона с образованием над нею примесных уровней.  [c.602]

Вследствие теплового движения электроны могут переходить в более высокое энергетическое состояние. В полупроводнике п-типа электроны из примесных уровней, находящихся под зоной проводимости, переходят в зону проводимости, обусловливая тем самым электропроводность полупроводника. В этом случае носителями электрического заряда являются электроны.  [c.602]

Рассмотрим случай, когда пространственные размеры области, в которой локализованы электронные и дырочные уровни, значительно превышают постоянную решетки. Поэтому мы можем провести квазиклассическое рассмотрение типа того, которое использовалось нами при описании примесных уровней в полупроводниках (гл. 28). Будем рассматривать электрон и дырку как частицы с массами и т . Эти величины представляют собой эффективные массы носителей в зоне проводимости и в валентной зоне [см. (28.3)1, которые мы для простоты считаем изотропными. Электрон и дырка испытывают кулоновское притяжение, которое экранируется за счет диэлектрической проницаемости е кристалла. Очевидно, мы имеем полную аналогию с задачей об атоме водорода, в которой приведенную водородную массу р, (определяемую равенством 1/р, = 1/Aiprot + 1/mei 1/mei) следует заменить величиной т — приведенной эффективной массой (1/т = 1/m. -f l/m. ), а заряд электрона — величиной е/е. Следовательно, будут существовать связанные состояния, наиниз-шее из которых локализовано в областях с пространственным размером порядка боровского радиуса, определяемого как  [c.245]

В источниках света необходимо добиваться максимального значения параметра, называемого внутренней квантовой эффективностью Пвнут- О определяется отношением числа генерируемых фотонов к числу носителей, пересекающих переход. Ясно, что эта величина зависит от относительной вероятности излучательных и безызлучательных переходов. Эта вероятность в свою очередь зависит от структуры перехода, примесных уровней в полупроводнике и от типа полупроводника.  [c.218]

Под воздействием внешнего электрического поля напряженностью Е на полупроводник его энергетические зоны становятся наклонными. о происходит из-за добавления к энергии электрона в полупроводнике в случае отсутствия внешнего поля дополнительной энергии, обусловленной внешним электрическим полем. Как видно из рис. 8.5 (горизонтальные переходы / и 2), в сильном электрическом поле при наклоне зон возможен переход электрона из валентной зоны и примесных уровней в зону проводимости без изменения энергии — путем туннельного просачивания электронов через запрещенную зону. Этот механизм увеличения концентрации свободных носителей под действием сильного электрического поля называют электростатической ионизацией. Она возможна в электрических полях с напряженностью порядка Id В/м. Если свободный электрон под действием внешнего электрического поля приобрета-  [c.274]

Иная ситуация имеет место в вырожденных полупроводниках. Слабое вырождение приводит к уменьшению коэффициентов поглощения на частотах, близких к краю собственного поглощения. Сильное же вырождение вообще сдвигает край поглощения в сторону более коротких волн. Этот эффект называют сдвигом Бурштейна. Он отчетливо проявляется в полупроводниках с малой плотностью состояний у дна зоны проводимости (или у потолка валентной зоны), в которых сильное вырождение достигается при сравнительно малых уровнях легирования. Так, в InSb легирование донорами (концентрация 5 10 м ) приводит к сдвигу длинноволновой границы собственного поглощения с 7,1 до 3,5 мкм. Во многих же случаях сдвиг Бурштейна маскируется другим эффектом сильного легирования — изменением плотности состояний у краев энергетических зон. Это изменение происходит вследствие размытия примесных уровней в примесную зону и слияния последней с зоной проводимости или с валентной зоной.  [c.322]


Ф. в. в полупроводниках и диэлектриках связан с прямыми (вертикальными) и непрямыми (невертикальными) оптич. переходами электронов из связанных состояний (валентной зоны или примесных уровней) в свободные (в зоны проводимости, см. Оптические яв.чения в полупроводниках). В чистых и слабо легированных полупроводниковых материалах основную роль играют можзонные переходы (рис. 3). Прямые оптич. переходы определяют основную часть спектральной характеристики Ф. в. в полупроводниках (рис. 4) и могут происходить при энергиях фотонов к ку . Непрямые (с участпом фононов) переходы менее вероятны они формируют длинноволновой участок спектральной характеристики и имеют граничную частоту V,,. На рис. 4 хорошо различаются области, соответствующие непрямым (/гvJ =5,15 эв) и прямым (ку = 5,45 эе) переходам.  [c.364]

ПРИМЕСНЫЕ АТОМЫ в полупроводниках — атомы постороннего элемента в элементарном полупроводнике (Ое, 81 и т. д.) или стехиометри-чески избыточные атомы в сложном полупроводнике, присутствие к-рых вызывает появление дополнительных энергетич. уровней. Подробнее см. Акцептор, Донор, Зонная теория. Полупроводники.  [c.202]

Перечисление примесных дефектов в полупроводниках не будет полным, если не упомянуть о возможности комплексообразования. В разделе, посвященном собственным точечным дефектам, уже упоминалось о простых комплексах (это дефекты Френкеля, дивакансии и т.д.). Подобные комплексы могут образовываться и примесными атомами. Так, в GaAs и GaSb, легированных литием (см. выще), образуются комплексы вакансий с междоузельными атомами лития [Ы+У г], ведущие себя в процессах рассеяния носителей заряда иначе, чем дефекты Li+ и При значительных концентрациях Li в GaAs возникают комплексы типа [Li LIq ], которые ведут себя как однократно заряженные акцепторы. При сильном легировании арсенида галлия Se или Те могут образовываться комплексы или преципитаты, которые влияют на квантовый выход излучения и характер люминесценции. На электрические свойства кремния значительное влияние оказывает комплексообразование между междоузельным примесным кислородом и атомами основного вещества (см. выще). Образование комплексов из простых доноров, приводящих к появлению глубоких уровней в запрещенной зоне, проявляется в появлении сильных избыточных токов в туннельных диодах из Ge при их легировании фосфором или сурьмой.  [c.137]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

Концентрация носителей. Предположим, что в полупроводнике имеются доноры с концентрацией N . Аналогично тому, как это было сделано для собственного полупроводника, можно записать условие электронейтральности и из него определить положение уровня Ферми в примесном полупроводнике. Так, в области низких термодинамических температур, когда процессами переброса элек-  [c.251]

Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне.  [c.365]

Однако помимо мелких уровней, определяемых соотношением (2.69), в полупроводниках имеются локальные уровни, лежащие на значительно больших расстояниях от энергетических зон. Эти глубокие уровни нельзя объяснить водородоподобной моделью и приходится считать, что электроны в таких атомах примеси слабо В(Эаимодействуют с атомами основного вещества, а орбита электрона примесного атома имеет малый радиус. Глубокие примесные уровни играют больщую роль в протекании неравновесных процессов.  [c.93]

В области очень низких температур, когда ионизация примесных уровней перестает быть полной, уровень Ферми занимает промежуточное положение (конкретно для донорного полупроводника) между донорным уровнем и дно.м зоны проводимости. Общий ход изменения положения уровня Ферми с температурой внутри запрещенной зоны (в отсут-ств1ие Вырожяен1ия) пю,каза1Н на рис. 43, где пунктиром обозначено положение уровня Ферми в собственной области (а — донорный образец, б — акцепторный).  [c.118]

При повышении концентрации примесных атомов электрон, локализованный вблизи одного из атомов примеси, начнет испытывать воздействие и со стороны других примесных атомов. В результате его энергетический уровень, оставаясь дискретным, несколько сдвйнется по энергии. Величина этого сдвига зависит от расположения других примесных атомов относительно центра локализации она тем больше, чем больше атомов примеси отстоит от центра на расстояние, не превышающее примерно Го (го — так называемый радиус экранирования, в случае слабо легированных полупроводников го>ав, где ав — радиус боровской орбиты в ир исталле см. гл. II, 8). Но распределение примеси в решетке никогда не бывает строго упорядоченным. Всегда имеют место локальные флюктуации концентрации. Поэтому и сдвиг энергии примесного уровня относительно дна свободной зоны Ес оказывается случайным и различным в разных точках образца. Это приводит к тому, что в запрещенной зоне вместо одного дискретного уровня появляется некоторый их набор. Такое явление называется классическим уширением уровней (см. рис. 44, б Ес—АЕ — энергия бывшего уровня примеси). Изложенная ситуация отв1бчает промежуточно легированному полупроводнику.  [c.120]

В сильно легированном полупроводнике можно добиться условия, при котором Го ав, где ав —радиус первой боров-ской орбиты 1ВО Дородоподо1бного иона в кристалле. Указанное соотношение между го и Зв при экранировании приводит к исчезновению дискретных уровней, создаваемых примесным ионом. Поэтому если исчезают примесные уровни, то не может существовать примесная область спектра. Попутно поясним, что роль экранирования определяется и концентрациями свободных носителей заряда, и концентрацией заряженных атомов примеси. Но указанные величины зависят от характера энергетического спектра системы—от того, существуют ли и в каком количестве примесные уровни. Поэтому задача сводится к тому, что сам энергетический спектр сильно легированного полупроводника следует определять самосогласованным полем.  [c.123]


Смотреть страницы где упоминается термин Примесные уровни в полупроводниках : [c.494]    [c.402]    [c.429]    [c.405]    [c.238]    [c.349]    [c.151]    [c.317]    [c.827]    [c.251]    [c.255]    [c.365]    [c.145]    [c.117]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> Примесные уровни в полупроводниках



ПОИСК



Боровский радиус для примесного уровня в полупроводнике

Положение уровня Ферми и концентрация свободных носителей заряда в собственных и примесных полупроводниках

Полуклассическая модель и примесные уровни в полупроводниках

Полупроводники

Полупроводники примесные

Примеры полупроводников Типичные примеры зонной структуры полупроводников Циклотронный резонанс Число носителей тока при термодинамическом равновесии Примесные уровни Заселенность примесных уровней при термодинамическом равновесии Равновесная концентрация носителей в примесном полупроводнике Проводимость за счет примесной зоны Теория явлений переноса в невырожденных полупроводниках Задачи Неоднородные полупроводники

Уровень Ферми в примесном полупроводнике

Уровни примесные



© 2025 Mash-xxl.info Реклама на сайте