Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уровни примесные

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ ПРИМЕСНЫХ АТОМОВ В КРИСТАЛЛЕ  [c.235]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]


После окончания освещения образца электроны переходят на более низкие энергетические уровни — примесные или в валентную зону. При непрерывном освещении полупроводника устанавливается динамическое равновесие между образующимися дополнительными (неравновесными) носителями и уходящими на нижние уровни, т. е. устанавливается динамическое равновесие между процессами генерации носителей заряда и рекомбинацией их.  [c.276]

Диаграмма состояния Po-W не изучена. W не взаимодействует с Ро при температурах вплоть до 700 °С [1]. По аналогии с диаграммами Po-U, Po-Pu, Ро образует с W вырожденную эвтектику при температуре, практически совпадающей с температурой плавления Ро, а взаимная растворимость элементов друг в друге находится на уровне примесной растворимости.  [c.14]

Для того чтобы кристалл был диэлектриком, уровень Ферми должен оказываться в запрещенной зоне для всех значений к. Далее, для большинства диэлектриков имеется широкая, порядка нескольких электрон-вольт, энергетическая щель между валентной зоной и зоной проводимости. Если энергетическая щель узкая, так что электроны могут при тепловом возбуждении преодолевать ее непосредственно или при помощи примесей (электроны могут занимать энергетические уровни примесных атомов внутри щели) и,  [c.303]

Полупроводниковые лазеры используют в качестве активных элементов неорганические вещества (кристаллы), обладающие свойствами полупроводников. В отличие от лазеров на примесных кристаллах генерация излучения в полупроводниках происходит не на переходах между уровнями примесных ионов, а на переходах между зоной проводимости и валентной зоной или между зонами и уровними, образуемыми примесями в запрещенной зоне, самого полупроводника. Таким образом, активным веществом является сама кристаллическая матрица, а примеси служат источником зарядов (электронов и дырок), рекомбинация которых приводит к возникновению фотонов.  [c.755]

ПРИМЕСНАЯ ЗОНА. При больших концентрациях примесных атомов волновые ф-ции валентных электронов в нормальном и возбужденном состояниях перекрываются, уровни примесных атомов расщепляются и образуют П. 3. — объединенную примесную полосу уровней, способную обеспечить проводимость. Подробнее см. Зонная теория, Полупроводники.  [c.202]

Определим положение химического потенциала в полупроводнике, содержащем в полосе запрещенных состояний дискретные уровни примесных атомов. Предположим, что примесные атомы образуют в кристалле донорные уровни энергии расположенные под зоной проводимости на небольшом расстоянии В таком полупроводнике электроны в зоне проводимости появляются по двум причинам за счет перебросов с донорных уровней и за счет перебросов из валентной зоны.  [c.158]


Рис. 18.15. Структура энергетических уровней примесных иоиов исполь- Рис. 18.15. Структура энергетических уровней примесных иоиов исполь-
Уровни примесных атомов V группы (доноры) и III группы (акцепторы) в германии и кремнии  [c.203]

В другом случае, отвечающем второму типу примесного полупроводника, электроны в результате теплового возбуждения переходят из состояний вблизи потолка заполненной или валентной зоны на уровни примесных атомов акцепторного т и п а. В результате этого процесса освобождается часть состояний в верхней части валентной зоны и, следовательно, приложение электрического поля может вызвать определенные изменения в распределении скоростей электронов этой зоны, т. е. привести к электрической проводимости. Электроны, занимающие состояния вблизи потолка валентной зоны, имеют аномальные характеристики скорости, и можно показать, что если валентная зона содержит N электронов, из которых часть, скажем X электронов, с наибольшей энергией удалена, то электрическая проводимость при этом проявляется так, как если бы ток переносился X носителями с зарядом - -е.  [c.39]

Упомянутое выше наличие пор и различного рода примесных и легирующих компонентов на границах структурных элементов соответствующих масштабных уровней обусловливает принципиальное отличие по составу, структуре и свойствам для центральной части и периферии структурных элементов сплавов. Наиболее существенным фактором, который характеризует комплекс энергетических свойств граничных слоев таких объектов, как фрактальные кластеры, блоки мозаики, фрагменты, зерна и другие структурные элементы, является их разреженная пористая фрактальная структура.  [c.92]

Из формул (7.110) и (7.114) следует, что наряду с основными примесными уровнями в запреш,енной зоне существуют возбужденные примесные состояния, соответствующие значениям квантового числа п=2, 3, 4,. .. Они располагаются выше основного донорного состояния или ниже основного акцепторного (рис. 7.13).  [c.239]

Плотность поверхностных уровней в трехмерном кристалле определяется числом одномерных цепочек атомов, выходящих на единичную площадь поверхности. Она достигает величины 10 — 10 см . Кроме рассмотренных нами уровней, называемых уровнями Тамма, существуют поверхностные состояния, связанные с дефектами, выходящими на поверхность, адсорбированными примесными атомами, и т. п. Их концентрация зависит от условий о б-работки поверхности.  [c.242]

Здесь N — эффективная плотность состояний в зоне проводимости, определяемая выражением (7.133) g — фактор спинового вырождения примесного уровня. Обсудим физический смысл величины g. Полное число примесных состояний в запрещенной зоне равно числу примесных атомов, т. е. равно A d в расчете на единичный объем кристалла, поскольку каждый атом может отдать  [c.252]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]

Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]


Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Нас, естественно, будет интересовать только излучательная рекомбинация, которая в полупроводнике может происходить в результате межзонных переходов (стрелка 1 на рис. 35.22) и переходов из зоны на примесный уровень (стрелка 2) или через оба примесных уровня (стрелка 3).  [c.296]

В отличие от металлов полупроводники имеют довольно сложный спектр оптического поглощения. В металле фотоны поглощаются электронами проводимости, совершающими переходы внутри энергетической зоны. Поэтому спектр поглощения металла непрерывен металлы поглощают излучение любой частоты. В полупроводниках фотоны могут поглощаться электронами валентной зоны (с последующим переходом в зону проводимости или на примесные уровни, находящиеся внутри запрещенной зоны), электронами на примесных уровнях (с переходом в зону проводимости или на другие примесные уровни), электронами проводимости (с последующими внутризонными переходами). Переходам электронов из валентной зоны в зону проводимости отвечает так называемая полоса собственного поглощения полупроводника она характеризуется наиболее высоким коэ-ф-фициентом поглощения. Частота о) р, соответствующая  [c.164]

Квантовый выход внутреннего фотоэффекта. Предположим теперь, что полупроводник освещается монохроматическим светом, частота которого выше пороговой частоты для внутреннего фотоэффекта. Последняя определяется шириной запрещенной зоны в собственных полупроводниках и энергией ионизации донорных или акцепторных примесей в примесных полупроводниках. При поглощении фотонов электронами валентной зоны или примесных уровней будут происходить соответствующие квантовые переходы, приводящие к образованию дополнительных (неравновесных) носителей заряда, которые и обусловливают фотопроводимость.  [c.176]

Различают два вида примесных уровней донорные и акцепторные. Первые располагаются в запрещенной зоне ниже дна зоны проводимости и способны отдавать под действием возбуждения электроны в зону проводимости. При этом доноры (донорные атомы) превращаются в положительно заряженные ионы, которые не участвуют в электронной проводимости (рис. 35). Полупровод Ник с донорными примесями  [c.91]

Элементарные процессы в кристаллофосфорах. Значительно более сложна картина процессов, происходящих Б кристаллофосфорах. Общее представление о ней можно получить, обратившись к ркс. 8.2. Здесь Ei — вершин а валентной зоны, Е — дно зоны проводимости, АЯ — ши-]7нна запрещенной зоны, Е я Е — соответственно основной и возбужденный -уровни примесного иона-активатора (здесь для простоты рассматриваются только два уровня г, общем случае примесный ион имеет большее число уровней), 9 — один из экситонных уровней, —уровень примеси, играющей роль ловушки для электронов про-  [c.188]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]

Неравенство (5) является условием инверсии для межзонных переходов. Инверсия населённостей может быть получена и для переходов. между зоной и примесным уровнем или примесными зонами в легиров, полупроводниках, и даже между дискретными уровнями примесного центра (напр., П. л. на внутрицент-ровом переходе в 1пР, легированном Ре, работающий на длине волны 2,7 икм при 2 К). Созданы также излучатели когерентного дальнего ИК-излучения, работающие при низкой темп-ре в режиме коротких  [c.52]


В этих лазерах рабочей средой служат жидкие диэлектрики с примесными рабочими атомами. Оказалось, что, растворяя редкоземельные элементы в некоторых жидкостях, можно получить структуру энергетических уровней, очень сходную со структурой уровней примесных атомов в твердых диэлектриках. Поэтому принцип работы жидкостных лазеров тот же, что и твердотельных. Преимущества жидкостных лазеров очевидны во-первых, не нужно ни варить стекло высокого качества, ни расти1 ь були для кристаллов. Во-вторых, жидкостью можно заполнять любой объем, а это облегчает охлаждение активного вещества путем циркуляции самой жидкости в приборе.  [c.35]

Рубиновый лазер. Тот же кристалл рубина, который был использован в мазере СВЧ диапазона, оказался также первым кристаллом, на котором был сделан лазер ), ио при этом использовались другие энергетические уровни иоиа Сг +. На рис. 18.15 показана структура энергетических уровней примесных ионов Сг +, используемая для работы лазера. Примерно иа высоте 15 000 см от основного уровня находятся два уровня, обозначенные и отделенные друг от друга интервалом 29 см Над этими уровнями лежат две широкие полосы энергий 1 и Поскольку эти полосы достаточно широки, онн могут быть эффективно заселены за счет оптического поглощения излучения от источников света с широким спектром частот (рис. 18.16). К таким источникам света относится, например, ксеноновая лампа-вспышка.  [c.644]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

Концентрация носителей. Предположим, что в полупроводнике имеются доноры с концентрацией N . Аналогично тому, как это было сделано для собственного полупроводника, можно записать условие электронейтральности и из него определить положение уровня Ферми в примесном полупроводнике. Так, в области низких термодинамических температур, когда процессами переброса элек-  [c.251]

Наблюдаемые явления связаны с образованием при больших концентрациях примеси примесных зон. Когда Л/d велика, волновые функции электронов, связанных с примесными атомами, перекрываются. Это приводит к расш,еплению примесных уровней в зону. С увеличением концентрации примеси эта зона все более расширяется и в конце концов сливается с зоной проводимости. Таким образом, исчезает энергия ионизации примеси.  [c.254]

Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне.  [c.365]

Зависимость электропроводности аморфного кремния от дозы облучения приведена на рис. 11.13. Видно, что пока доза облучения не превышает некоторого порогового значения, резкого увеличения электропроводности не наблюдается. При этом практически все электроны с донорных примес- ных уровней переходят на локализованные состояния вблизи р-Лишь после того как все эти состояния будут заполнены, начинает доминировать примесная проводимость, связанная с забросами электронов из донорной зоны в зону проводимости. Аналогичная ситуация имеет ме сто в аморфном гер-мании. в  [c.367]


Смотреть страницы где упоминается термин Уровни примесные : [c.145]    [c.8]    [c.557]    [c.136]    [c.5]    [c.135]    [c.95]    [c.31]    [c.251]    [c.255]    [c.298]    [c.365]    [c.295]    [c.145]    [c.175]    [c.189]    [c.214]   
Атомная физика (1989) -- [ c.350 ]



ПОИСК



Боровский радиус для примесного уровня в полупроводнике

Положение уровня Ферми и концентрация свободных носителей заряда в собственных и примесных полупроводниках

Полуклассическая модель и примесные уровни в полупроводниках

Примеры полупроводников Типичные примеры зонной структуры полупроводников Циклотронный резонанс Число носителей тока при термодинамическом равновесии Примесные уровни Заселенность примесных уровней при термодинамическом равновесии Равновесная концентрация носителей в примесном полупроводнике Проводимость за счет примесной зоны Теория явлений переноса в невырожденных полупроводниках Задачи Неоднородные полупроводники

Примесные уровни в полупроводниках

Уровень Ферми в примесном полупроводнике

Энергетические уровни примесных атомов в кристалле



© 2025 Mash-xxl.info Реклама на сайте