Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теоретическая и реальная прочность

Эксперименты по упрочнению кристаллов, а также многочисленные случаи преждевременного разрушения конструкций и сооружений при напряжениях, значительно меньших расчетных, показали недостаточность развитых представлений о прочности как о постоянной материала. Такое значительное различие между теоретической и реальной прочностью материалов на современном уровне объясняется а) значительными отклонениями от строгого, регулярного расположения атомов в кристаллической решетке материала, т. е. дефектностью структуры материала б) технологическими нарушениями сплошности материала — трещинами.  [c.328]


Теоретическая и реальная прочность  [c.130]

Рис. 59. Прочность металлов а в зависимости от плотности дислокации п (теоретическая и реальная прочность) Рис. 59. <a href="/info/397146">Прочность металлов</a> а в зависимости от <a href="/info/14105">плотности дислокации</a> п (теоретическая и реальная прочность)
Теоретическая и реальная прочности. В идеальном металле, лишенном дефектов, полностью реализуются силы связи между атомами, в связи с чем прочность идеальных металлов в тысячи раз выше реальной и приближается к теоретически рассчитанной (участок / на рис. 59). Прочность металлов а зависит от плотности дислокаций и числа искажений решетки п. С увеличением плотности дислокаций и других дефектов строения прочность вна-  [c.80]

Есть ли разница между теоретической и реальной прочностью кристаллов Теоретическая прочность идеального твердого тела, вычисленная с учетом структуры, величины межатомных взаимодействий и расстояний между атомами и молекулами, во много раз превышает реальную. Последняя составляет лишь проценты, а зачастую доли процента от теоретической прочности. В чем секрет такого несоответствия  [c.42]

Гриффитс отмечает, что рост трещины в растянутой пластинке возможен без работы внешних сил лишь при увеличении поверхностной энергии тела, вызванном приращением площади поверхности трещины, компенсирующемся уменьшением объемной потенциальной энергии деформации. Исходным толчком для этой работы послужило, по-видимому, известное несоответствие теоретической и реальной прочности кристаллов. Это несоответствие Б определенных пределах объясняется по теории Гриффитса наличием исходных дефектов. Условие Гриффитса являлось дополнительным к уравнениям теории упругости условием , при помощи которого задачи теории упругости о концентрации напряжений для тел с разрезами (граница которых состоит из одних и тех же индивидуальных точек) можно формулировать как задачи теории трещин, т. е. разрезов, способных распространяться. Таким образом, переход от расчета тел с разрезами к расчету тел с трещинами осуществляется после введения некоторого дополнительного положения о механизме разрушения [49, 97].  [c.8]


Сравнение теоретической и реальной прочности твердых тел  [c.21]

Теоретическая прочность кристаллов на сдвиг. Другим примером существования дефектов кристаллической решетки служит различие между теоретической и реальной прочностью кристалла на сдвиг.  [c.21]

Атомы в узлах решетки находятся в равновесном состоянии и обладают минимальной внутренней энергией. При смещении атомов из узлов их энергия возрастает. Смещение атома на один параметр решетки (межатомное расстояние) — это преодоление энергетического барьера . Для этого необходимо создать касательные напряжения. Так как на 1 см приходится около 10 атомов, то для их одновременного перемещения в плоскости сдвига требуется очень большое напряжение. Это так называемое критическое сопротивление сдвигу, которое в сотни и тысячи раз превышает практически установленную величину напряжения, вызывающую пластическую деформацию металла (табл. 8). Расхождение между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено сравнительно недавно на основе дислокационного механизма пластического деформирования,  [c.124]

Выразим сказанное выше относительно теоретической и реальной прочностей в математической форме. Если  [c.43]

Теоретическая и реальная прочность..........................170  [c.168]

Таким образом, теория дислокаций устраняет противоречие между теоретическим и реальным значениями прочности кристаллов на сдвиг.  [c.51]

Несоответствие между теоретической и наблюдаемой прочностью кристаллических тел является результатом того, что внутреннее строение реального металла отличается от идеального.  [c.9]

Эффективное использование резервов заложенных в материалах свойств приобретает актуальнейшее значение на современном этапе. О величине таких резервов достаточно красноречиво свидетельствует, например, теоретическая оценка прочности твердых тел, в частности металлов. Так, прочность металлов на разрыв (при всестороннем растяжении) может достигать нескольких сотен и тысяч килограмм-сил на 1 мм [1]. Прочность же промышленных металлов и сплавов обычно составляет 10—100 кгс/мм2. "Такая большая разница между значениями теоретической и технической прочности обусловлена наличием в реальном материале различных дефектов микроскопических — точечных (вакансии, межузельные атомы, примесные атомы в твердых растворах), линейных (дислокации), двухмерных (поверхностные и двойниковые границы, дефекты упаковки, межзеренные границы в поликристалле) и макроскопических (включения других фаз, поры, трещины и пр.).  [c.6]

Различие между теоретической и фактической прочностью, по-видимому, означает существование в реальном материале каких-то локальных концентраторов напряжений, повышающих их до такой степени, что теоретическая прочность локально превышается и начинается разрушение. Гриффитс в 1920 г. предположил, что хрупкие материалы содержат множество субмикроскопических трещин, которые в условиях действия достаточно высоких напряжений растут до макроскопических размеров, в результате чего в конце концов происходит хрупкое разрушение. Теория Гриффитса и другие аналогичные теории основаны на предположении, что эти микротрещины или другие дефекты структуры приводят к локальной концентрации напряжений.  [c.45]

Сравнение в рамках рассмотренной модели теоретической прочности кристаллов на сдвиг и реальной прочности (табл. 1.2) показывает, что реальная прочность кристаллов ориентировочно на 3  [c.23]

Различают теоретическую и техническую прочность металла. При определении теоретической прочности предполагают, что исследуемый монокристалл имеет идеальную кристаллическую решетку, деформируется до момента разрушения упруго и разрушается хрупко, без пластической деформации. Техническая, или наблюдаемая, прочность определяется непосредственно экспериментом на реальных образцах со всеми присущими им дефектами.  [c.29]


В основе создания сверхпрочных материалов лежит современное представление о дислокациях (искажения атомно-кристаллических пространственных решеток), как о первопричине наблюдающегося расхождения между реальной прочностью металлов и теоретической, предсказываемой на основании величины атомных связей в кристаллических решетках.  [c.171]

Описанный механизм возникновения и распространения сдвига является первопричиной пониженной реальной прочности металлов по сравнению с теоретической. Перемещение площадки облегченного скольжения продолжается до тех пор, пока дислокация не выйдет на поверхность кристаллического блока или не встретится с препятствием.  [c.172]

Сравнение реальной прочности кристаллов со значениями, полученными на основании теоретических расчетов, обнаруживает весьма существенные расхождения. Теоретический предел прочности в десятки и даже в сотни раз превосходит значения, получаемые при испытаниях реальных образцов.  [c.92]

Теоретическая прочность металлов, определяемая силами межатомной связи в кристаллической решетке, в сотни и тысячи раз превышает их техническую (реальную) прочность  [c.24]

Однако и в этом случае теоретическое значение критического напряжения сдвига по крайней мере в десятки, а иногда и в сотни раз превышает реальную прочность металлов.  [c.97]

В реальном кристалле всегда имеются дефекты строения. Установлено, что реальная прочность любого металла намного меньше прочности, полученной на основе теоретических расчетов. Например, известно, что предел прочности железа практически составляет около 300-10 Па (30 кгс/мм ). Однако теоретические расчеты показывают, что если у железа соблюдена закономерность расположения атомов, то для его разрушения необходимо приложить нагрузку 10-13 тыс. МПа (1000-1300 кгс/мм ). Причиной столь значительного расхождения между реальной и теоретической прочностью металлов является наличие у реальных кристаллов большого количества структурных дефектов. В результате этого связи между атомами нарушаются, и в сопротивлении действию внешних сил принимают участие не все атомы, составляющие данный кристалл, а только часть их. При отсутствии дефектов все атомы принимали бы участие в сопротивлении действию внешних сил, и тогда разрушить металл было бы значительно труднее.  [c.8]

Давно установлено несоответствие между реальной прочностью кристалла и теоретической, рассчитанной на основании оценки сил взаимодействия между атомами кристаллической решетки. Это несоответствие является следствием наличия в реальных кристаллах дефектов. Различают точечные, линейные, поверхностные и трехмерные дефекты кристаллов.  [c.57]

К испытаниям моделей прибегают в том случае, когда проведение экспериментальных исследований на реальном натурном объекте по каким-либо причинам невозможно, а данные расчетов представляются недостаточно убедительными. Эксперименты на моделях проводятся для проверки функционирования сложных механизмов, при отработке статической, динамической и тепловой прочности конструкций и сооружений, а также с целью подтверждения теоретических положений и методов расчета. Измерения на моделях особенно часто проводятся в том случае, когда реальный объект еще не построен или не может использоваться для проведения экспериментов по соображениям безопасности работ.  [c.36]

Элементарный акт сдвига — это смещение одной части кристалла относительно другой на одно межатомное расстояние (рис. 5.3). В идеальном кристалле в скольжении должны одновременно участвовать все атомы, находяш иеся в плоскости сдвига. Для такого синхронного жесткого сдвига требуется, как показывают расчеты, критическое касательное напряжение Гкр = С/2тг 0,16G G — модуль упругости при сдвиге). Величину Ткр называют теоретической прочностью кристалла. В реальных кристаллах для сдвига на одно межатомное расстояние требуются напряжения около 10 G, что в 1000 раз меньше теоретического значения. Низкая прочность реальных кристаллов обусловлена их структурным несовершенством.  [c.124]

Теоретическая прочность (сопротивление разрыву межатомных связей) в реальных кристаллах из-за наличия структурных дефектов не достигается. Реальная прочность на два-три порядка ниже теоретической и определяется не столько межатомными силами связи, сколько структурой материала.  [c.231]

Занимается теоретическими и практическими вопросами прочности в области сосудов высокого и сверхвысокого давления. Им разработан целый ряд нормативных документов по расчету на прочность элементов сосудов для высоких давлений, методики оценки опасности реальных дефектов, а также ряд программ на ПЭВМ по расчету и оценке прочности и остаточного ресурса эксплуатации реальных конструкций сосудов высокого давления. В настоящее время занимается в области физики твердого тела и завершает работу над методикой расчета при деформировании и разрушении материала с учетом растворенного в нем водорода, условий нагружения и процессов, происходящих в металле на макро- и микроуровне.  [c.469]

В механике в качестве основного объекта исследования внутренних напряжений и деформаций тела берется малый его объем такой, что практически он содержит очень много атомов и даже много зерен, но в математическом отношении он предполагается бесконечно малым. Допускается, что перемещения, напряжения и деформации являются непрерывными и дифференцируемыми функциями координат внутренних точек тела и времени. Предполагается, далее, что возникающие за счет внешних воздействий на тела внутренние напряжения в каждой точке зависят только от происходящей за счет внешних воздействий дефор мации в этой точке, от температуры и времени. Таким образом, наряду с понятием абсолютно твердого тела в механике возникает новое понятие материального континуума или непрерывной сплошной среды и, в частности, сплошного твердого деформируемого тела . Это понятие оказалось чрезвычайно плодотворным не только в теоретическом и расчетном отношении, поскольку позволило для исследования прочности привлечь мощный аппарат математического анализа, но и в экспериментальном, поскольку выявило, что для исследования прочности твердых тел имеют значение лишь механические свойства, т. е. связь между напряжениями, деформациями, временем и температурой, а не вся совокупность сложных взаимодействий, определяющих полностью физическое состояние реального твердого тела. Отсюда возникли специальные экспериментальные методы исследования механических свойств различных материалов. Возникла, и притом более ста лет тому назад, механика сплошных сред или континуумов и такие основные науки о прочности твердых тел, как сопротивление материалов, строительная механика, теория упругости и теория пластичности.  [c.12]


Расхождения между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено дислокационным механизмом пластической деформации. Для перемещения дислокаций (рис. 16) требуется лишь незначительное перемешени атомов и пластическая деформация совершается при небольшой величине касательных напряжений, что и соответствует экспериментальным данным.  [c.23]

Несоответствие между теоретической и реальной прочностью металлов привело к мысли, независимо высказанной Г. Тейлором, Е. Орованом и М. Поляни в 1934 г., что реальные кристаллы металлов имеют дефекты, известные под названием дислокаций, и что пластическая деформация совершается не путем одновременного скольжения целых атомных плоскостей одна по другой, а путем постепенного перемещения дислокаций в плоскости скольжения. Как будет показано ниже, такого род.а перемещение происходит при наличии дислокаций очень легко, и именно этим объясняется низкая прочность металлических кристаллов.  [c.74]

Существенное различие теоретической и фактической прочности металла привело к мысли о необходимости рассматривать не идеальный кристалл с правильным расположением атомов, а реальный, содержащий дефекты (см. гл. II). В 1934 г. независимо друг от друга Тэйлором, Орованом и Поляни впервые введено представление о сдвиге (скольжении) одной части кристалла относительно другой посредством движения дислокации. Введение этого понятия было революционным для физики прочности и пластичности. Наиболее интенсивно теория дислокаций развивалась в послевоенные годы и в настоящее время стала неотъемлемой частью физики твердого тела, физических основ прочности и пластичности.  [c.21]

Разработка дислокациотой теории объясняет, почему реальная прочность сталей и сплавов в 70-100 раз ниже теоретической. Так, реальная прочность чистого железа близка к 0,2 Па, в то время как расчетная его прочность составляет 14 Па. Основная причина такого большого расхождения — наличие в металлах дислокаций. Характерно, что полученные в лабораторных условиях чистейшие монокристаллы железа, свободные от дислокаций, имеют реальную прочность, близкую к расчетной, она равна 13 Па. Если бы удалось получить технические стали с прочностью, близкой к расчетной, то экономический эффект от снижения расхода металла бьш бы значительным.  [c.12]

В процессе изучения основных особенностей трещин и закономерностей их образования были сделаны важные открытия. Галилей установил, что разрушающая нагрузка прямо пропорциональна силе, действующей на брус, и обратно пропорциональна площади его поперечного сечения. Ш. Кулоном, А. СеннВенаном, и О. Мором бь1ли заложены основы теории предельного равновесия/ ГГоявив-шиеся в 1920 и 1924 годах работы А.А. Гриффитса по теории трещин считаются основополагающими в области теоретических исследований механического разрушения [l, 2]. По-видимому, исходным толчком для этих работ явилось известное несоответствие между теоретической прочностью межатомных связей и наблюдаемой экспериментально. Напомним, что теоретическая прочность на сдвиг одной атомной плоскости по другой (теоретический предел текучести) Тт = = G/2 7Г (или по другим, более точным оценкам, Tj G/30), т.е. достаточно велика. Ниже приведены справочные данные по теоретической и реально наблюдаемой прочности Н/м -10 для монокристаллов некоторых чистых материалов  [c.51]

Второе, диаметрально противоположное направление, стремящееся к увеличению степени неоднсфодности и числа искажений кристаллической решетки, разумеется, нс позволяет приблизиться к теоретической прочности, но может существенно повысить реальную прочность технических металлов (рис. 85). Пределом является плотность дислокаций порядка 10 см , когда расстояния между дислокациями приближаются к межатомным, атомно-кристаллическая решетка сильно искажается, вследствие чего прочность падает. Первым этапом на этом пути являются легирование и термообработка, упрочняющий эффект которых в сущности сводится к увеличению плотности дислокаций.  [c.174]

Это соотношение впервые получено Гриффитсом и названо его именем. Согласно этому соотношению, реальная прочность Ра твердого (упругохрупкого) тела, имеющего трещину размером /, пропорциональна корню квадратному из длины трещины. Учитывая выражение для теоретической прочности идеального твердого тела, имеем  [c.128]

Идеальную (теоретическую) Рид и реальную Ррл, Н/м , прочности твердых тел (уравнения Поляни—Смекала и Гриффитса)  [c.331]

В четырех главах книги рассматриваются различные аспекты весьма актуального вопроса, связанного с созданием и практическим осуществлением новых путей резкого повыщения дроч-ности металлов. Эта проблема в настоящее время является одной из основных в металловедении. Развиваемые теорией дислокаций П1редставления о несоверщенном строении кристаллических материалов позволили объяснить, почему реальная прочность металлов составляет всего лишь десятые или даже сотые доли процента от теоретической. Настоящая же теория должна не юлько констатировать и объяснять те или иные явления и процессы, но и предсказывать пути управления этими процессами с целью получения нужных нам свойств.  [c.3]

В первых публикациях по механике разрушения А. А. Гриффитс показал, что противоречия между теоретическим сопротивлением разрушению и реальной трещиностойкостью может быть объяснено наличием в материалах дефектов в виде трещин. Дая е в случае незначительных нагрузок концентрация напряягений у вершины трещин может достигать значений когезионной прочности. Позднее Г. Р. Ирвином было доказано, что локальные напряжения в устье трещины при статическом нагружении пропорциональны коэффициенту интенсивности напряжений К1 который может быть определен по формуле  [c.136]

Во многих случаях необходимо определять основные механические характеристики при испытании малых образцов диаметром 3—6 мм и меньше (микрообразцов) и судить по этим характеристикам об интегральных свойствах материала в целом и о локальных свойствах отдельных исследуемых зон. Необходимость в применении малых образцов возникает, например, при исследованиях дефицитных материалов, изысканиях новых сплавов, изучении неоднородностей в свойствах отдельных зон по объему детали, исследованиях аварийных деталей, сварных и паяных швов и т. д. По результатам испытаний микрообразцов можно получить весьма важные теоретические и практические данные. Для того чтобы приблизить такие исследования к реальным условиям эксплуатации, необходимы создание специализированных машин (для испытаний при разных температурах, в вакууме, в различных газовых и жидких средах) и разработка новых методов микроиспытаний на ползучесть, длительную прочность и т. п. [205].  [c.76]

Данное условие является разновидностью энергетического критерия и учитывает различие упругих и прочностных характеристик относительно осей упругой симметрии материала. Этот критерий прочности был предложен для композиционного материала, каждый слой которого представляет собой ортотропную упругую и однородную пластинку с отсутствием межслоевого сдвига и продольного изгиба. Предложенная модель материала существенно отличается от реального, этим в первую очередь можно объяснить расхождение теоретических и эскперименталь-ных значений прочности.  [c.30]

В механике разрушения уменьшение прочности с увеличением объема объясняется наличием макроповреждений в реальных телах. Введение повреждений типа трещин делает возможным анализ полей напряжений вокруг них на основе линейной теории упругости. С помощью таких представлений может быть количественно объяснено большое различие между теоретической прочностью атомных связей и реальной макроскопической прочностью, наблюдаемой на образцах конечных размеров, без необходимости рассмотрения неоднородностей атомного масштаба.  [c.214]



Смотреть страницы где упоминается термин Теоретическая и реальная прочность : [c.170]    [c.69]    [c.58]    [c.44]    [c.64]    [c.237]   
Смотреть главы в:

Сопротивление материалов и основы теории упругости и пластичности  -> Теоретическая и реальная прочность



ПОИСК



Прочность теоретическая

Реальная прочность

Реальный газ



© 2025 Mash-xxl.info Реклама на сайте