Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактная коррозия алюминия и его сплавов

Коррозией магния и его сплавов при контакте с другими металлами. Алюминиевые сплавы, содержащие магний (например, марки 5050, 5052 и 5056), менее подвержены действию щелочей, которые образуются при работе пары магний—алюминий, и поэтому их можно применять в контакте с магнием. Применим также чистый алюминий. Однако в большинстве случаев магний следует изолировать от других металлов. Например, под головки болтов и винтов нужно помещать непроводящие прокладки большего размера. Благодаря этому увеличивается сопротивление электролита и уменьшается контактная коррозия.  [c.355]


Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием.  [c.75]

Контактная коррозия общие сведения 24, 25, 88, 89 алюминия и его сплавов 141— 143  [c.508]

При конструировании металло]гз-делий с использованием деталей из алюминия и его сплавов необходимо учитывать их высокую склонность к контактной коррозии.  [c.387]

Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов обеспечивает свинчиваемость резьбовых деталей.  [c.899]

Алюминий и его сплавы чувствительны к контактной коррозии. При контакте с более электроположительными металлами (Fe, Ni, Си) алюминий является анодом и разрушается. Алюминиевые сплавы, легированные медью, подвержены МКК. Для защиты от такой коррозии сплавы дополнительно легируют магнием, а листовые полуфабрикаты плакируют чистым алюминием.  [c.476]

Алюминий и его сплавы очень чувствительны к контактной коррозии, особенно при контакте с медью, свинцом, а также с железом и сталью.  [c.104]

Для предупреждения опасности развития в конструкциях контактной коррозии необходимо избегать сочленений алюминия и его сплавов с медными, латунными, бронзовыми и стальными деталями. В тех случаях, когда указанных сочленений избежать не удается, необходимо применять между ними изолирующие прокладки или слои лакокрасочных покрытий или грунтов. Можно также кадмировать изделия или цинковать. Неметаллические материалы должны быть не агрессивны, не гигроскопичны, не выделять активных веществ.  [c.546]

Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних.  [c.84]

Эффективное средство борьбы с контактной коррозией— изоляция металлов друг от друга неметаллическими материалами. Необходимо убедиться в том, что контакт с неметаллическим материалом не вызывает коррозию применяемых металлов. Особым будет случай контактной коррозии металлов, способных в зависимости от значения потенциала в данной среде находиться в пассивном или в активном состоянии. Так, аустенитная сталь в кислых средах при pH О находится в пассивном состоянии. В местах контакта с алюминием или его сплавами потенциал стали сместится в отрицательную сторону и может достигнуть значений, при которых сталь в данной среде будет находиться в активном состой-НИИ. Естественно, при этом произойдет разрушение стали.  [c.606]


Результаты исследования контактной коррозии титана с алюминием и нержавеющей сталью в серной кислоте приведены в табл. 33. В разбавленной (0,5%-ной) серной кислоте потенциал титана равен 4-0,43 в, а потенциал алюминия равен —0,2 в. В соответствии с этими значениями потенциалов в паре Т1—А1 анодом пары является алюминий. Коррозия алюминия вследствие этого, как видно из таблицы, возрастает. Титан и его сплавы, несмотря на то, что они являлись катодами коррозионных пар, подвергались коррозии. Причиной этого является отрицательный защитный эффект, проявляющийся при катодной поляризации титана в тех кислых средах, в которых он находится в отсутствии катодной поляризации в пассивном состоянии .  [c.64]

Защита в трещинах кадмиевого покрытия. Кадмиевые покрытия широко используются для стали не только для защиты ее от разрушения, но также для предотвращения серьезной контактной коррозии, если сталь находится в контакте со сплавом алюминия. Имеются некоторые колебания в использовании кадмиевого покрытия на высокопрочных сплавах, вследствие опасности водородной хрупкости. Этот вопрос обсужден на стр. 379, 380. При некоторых других обстоятельствах, однако, кадмиевое покрытие ведет себя удовлетворительно. Сталь с царапинами в кадмиевом покрытии обычно не подвергается коррозии. В соленой воде это иногда объясняется закупориванием их основным хлоридом или другими продуктами. Однако, защита в трещинах наблюдается и в деминерализованной воде (без солей), где объяснение, основанное на образовании основного хлорида, непригодно. Нормальный электродный потенциал кадмия менее отрицателен, чем потенциал железа, и, если элемент Сс1—Ре погружен в раствор, содержащий оба иона в эквивалентных количествах, то кадмий будет катодом, так что электрохимической защиты железа ожидать нельзя. Если, однако, такой элемент помещен в воду, не содержащую ни ионов железа, ни ионов кадмия, имеет место иной случай, а именно, становится существенной энергия активации. Два металла, по крайней мере, вблизи контакта будут иметь один и тот же потенциал по отношению к воде, и при этом общем потенциале, вероятно, кадмий будет переходить в раствор быстрее, так как его энергия активации относительно низка, в то время как железо с его высокой энергией активации будет переходить в раствор более медленно, чем в случае, если бы оно не было соединено с кадмием. Таким образом, контакт будет обеспечивать значительную катодную защиту по отношению к железу. Этот вопрос обсуждается ниже на стр. 592.  [c.586]

Высокая коррозионная стойкость алюминия и его сплавов в условиях агрессивных сред, характерных для нефтедобывающей промышленности, делает перспективным их использование в качестве конструкционного материала для изготовления буровых, насоснокомпрессорных труб и деталей газопромыслового оборудования. Известно, что алюминий и его сплавы подвергаются коррозионному разрушению в результате общего растворения, питтинга, межкристаллит-ной коррозии, коррозии под напряжением, расслаивающейся коррозии. Вид коррозионного разрушения определяется составом алюминиевого сплава, зависит от состава коррозионной среды и условий эксплуатации. Так, при использовании бурильных труб из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их с остальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии, а при нагружении таких соединений пере-меннылА нагрузками возникают процессы фреттинг-коррозии. Значительное влияние на характер коррозионного разрушения оказывает pH коррозионно-активной среды. Практика эксплуатации алюминиевых труб показывает, что с увеличением pH от 1 до 13 меняется характер коррозионного поражения равномерная коррозия — в сильнощелочной, щелевая - в сильно кислой областях, питтинговая - при pH = 3-11.  [c.120]

Данные, приведенные в табл. 78 и 7Й, подтверждают, что особенно склонны к развитию контактной (щелевой) коррозии соединения алюминия и его сплавов, паяные оловом, свинцом и их сплавами, ферритные стали и чугун, паянные серебром, серебрянными припоями, свинцом, соединения меди, паянные свинцовыми припоями ПСр2,5 и ПСрЗ, имеющими слабое химическое сродство с паяемым металлом и неблагоприятное соотношение электрохимических потенциалов в условиях коррозионных испытаний. Данные по коррозионной стойкости паяных соединений в основном подтверждают такой вывод  [c.207]


Способность ПИНС предотвращать коррозионно-механический износ (ДФС21) оценивали по уменьшению фреттинг-кор-розии, коррозионной усталости и коррозионного растрескивания. Фреттинг-коррозию оценивают на специальных установках (вибростендах), реализующих условия этого вида коррозии в узлах трения типа плоскость — шар , плоскость — плоскость , плоскость — ролик , шар —шар (четырехшариковая ячейка) [20, 22, 61 ]L В данных условиях создаются высокие удельные, контактные нагрузки, колебания с малой амплитудой (от долей до десятков мкм) и небольшой относительной скоростью движения поверхностей, а также условия для развития электрохимической коррозии (добавляется электролит). Продукты износа и коррозии при этом не выводятся из зоны контакта. Фрет-тинг-коррозии особенно подвержены металлы, продукты окисления которых тверже самого металла это — алюминий и его сплавы, некоторые виды сталей и пр.  [c.113]

Магниевые сплавы обладают наиболее отрицательным потенциалом среди металлов и сплавов, применяемых в конструкциях самолетов. Поэтому выбор допустимых контактов, соотношение площадей контактируемых разнородных металлов, способы их сочленений с учетом возможности их антикоррозионной защиты должны быть тщательно продуманы. Допускаются контакты при эксплуатации в атмосферных условиях с магниевыми сплавами других марок, алюминием и его сплавами, цинком, кадмием, сталью фосфатированной (пропитанной маслом фосфатной пленки или лакокрасочным материалом), сталью хроматированной, медными сплавами лужеными и титаном. Однако и в этих случаях обе контактируемые поверхности следует во избежание непосредственного контакта покрывать слоем лококрасочного покрытия. Контактная коррозия опасна тем, что наиболее сильное разрушение анода, в данном случае магниевого сплава, происходит на границе раздела контактируемых металлов.  [c.49]

В атмосферных условиях никелевое и хромовое покрытим защищают алюминиевые сплавы лучше, чем анодирозаяие. Так, при толщине покрытия 50 мк никель и хром удовлетворительно защищают алюминий от атмосферной коррозии в течение 16 месяцев. Еще лучшими защитными характеристиками обладает двухслойное покрытие никель—хром. Подслой меди не улучшает защитные свойства хромового покрытия. Кадмиевое покрытие используют для защиты алюминия и его сплавов от контактной коррозии. Серебряное, медное, оловянное покрытия применяют для защиты от окисления алюминиевых электрических контактов. Серебряное и родиевое покрыт11Я используют для защиты от коррозии алюминиевых волноводов [210].  [c.106]

Из материалов, используемых в конструкции приборов, наиболее стойкими оказались высокохромистые и хромоникелевые нержавеющие сплавы, алюминий, бронза, медь и медные сплавы. Когда в конструкции и медь, и медные сплавы находились в контакте со сталью, алюминием, свинцом, эловом и его сплавами, то наблюдалась коррозия последних сплавов. В таких случаях необходимо применять специальные меры защиты от контактной коррозии, а также специальные покрытия.  [c.79]

При температурах 385—445° С в полифинилах не стойки магний, цирконий и его сплавы, а также гафний [1,69], [1,70]. Цирконий в этих условиях становится очень хрупким из-за образования гидридов. Увеличение содержания воды в полифинилах приводит к значительному возрастанию скорости коррозии. Движение органического теплоносителя со скоростью 9 м/сек увеличивает лишь скорость коррозии циркония [1,70]. Коррозионное растрескивание и контактная коррозия в органических теплоносителях не наблюдаются [1,70]. Скорость коррозии углеродистых, низколегированных нержавеющих сталей и алюминиевых сплавов в полифинилах при температуре 380—445° С не превышает 0,025 мм/год. При температуре 430°С наиболее пригодны для изготовления оболочек тепловыделяющих элементов аустенитная нержавеющая сталь, алюминий типа САП, содержащий до 10% окиси алюминия, и бериллий [1,71]. В качестве основного конструкционного материала для органических теплоносителей может быть рекомендована углеродистая или низколегированная сталь. Это объясняется тем, что в высокотемпературном контуре, заполненном органическим теплоносителем, углеродистая сталь коррозии фактически не подвергается. Если принять соответствующие меры, то можно избежать и отложения продуктов полимеризации на теплопередающих поверхностях. Чтобы улучшить стойкость конструкционных материалов, органические теплоносители необходимо очищать от воды [1,72].  [c.55]

Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии.  [c.134]


Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят J приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен-  [c.83]

В морской воде стационарные потенциалы металлов увеличиваются в ряду М - 2п->-А1->Сс1-)-Ре- РЬ- 5п-)-->Ni- u Ti-) Ag. Поэтому каждый последующий металл при контактировании с предыдущим усиливает его коррозию. Чем больше удалены металлы друг от друга в указанном ряду, тем больше при одинаковых поляризационных характеристиках контактная коррозия. Так, например, стационарный потенциал дуралюмина (сплав системы А1—Си) в морской воде более отрицательный, чем у меди, никеля, стали 12X17 (Х17), олова, свинца, железа, но более положительный, чем у кадмия, алюминия и цинка. В соответствии с этим контактная коррозия дуралюмина в морской воде усиливается при контакте с медью, никелем, нержавеющей сталью, железом, оловом и свинцом. При контакте с кадмием, алюминием и цинком коррозия дуралюмина уменьшается.  [c.106]

Лайстер и Бекхэм [17] показали, что в очень жестких условиях (погружение на 6 мес в морскую воду) необходима толщина серебряного покрытия минимум 0,025 мм для стали, даже когда само серебряное покрытие защищается тонкими родиевыми слоями. В аналогичных условиях слой серебра толщиной 0,0125 мм полностью обеспечивает защиту латуни. Применение подслоя с потенциалом, занимающим промежуточное значение, в общем случае желательно, когда используется тонкое металлическое покрытие для наиболее активных основных металлов, например таких, как сталь, цинк н его сплавы, а также для алюминия, в противном случае коррозия в несплошностях будет ускоряться за счет действия контактной пары, образованной между покрытием и основным металлом, а также за счет высокой электрохимической активности металлов, используемых в качестве покрытий. При использовании основного металла, который способствует развитию пористости в покрытиях, толщина подслоя должна быть  [c.454]


Смотреть страницы где упоминается термин Контактная коррозия алюминия и его сплавов : [c.249]    [c.521]    [c.402]   
Морская коррозия (1983) -- [ c.143 ]



ПОИСК



Алюминий и сплавы алюминия

Алюминий контактная

Алюминий коррозия

Контактная коррозия

Контактная коррозия алюминия

Контактные сплавы

Коррозия алюминия, его сплавов

Коррозия и сплавы

Сплав алюминия



© 2025 Mash-xxl.info Реклама на сайте