Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория деформаций и напряжений. Законы сохранения

ТЕОРИЯ ДЕФОРМАЦИЙ И НАПРЯЖЕНИЙ. ЗАКОНЫ СОХРАНЕНИЯ  [c.4]

В учебнике (2-е изд.— 1978 г.) рассматриваются статистическое обоснование основных понятий и полевых функций механики сплошной среды (МСС), даны теория деформаций, напряжений и процессов деформации и нагружения в окрестности точки тела, законы сохранения и функциональные представления термодинамических функций, теория определяющих соотношений и уравнений состояния, замкнутые системы уравнений МСС и общие постановки краевых задач. Даны общие преобразования квазилинейных уравнений МСС, упрощающие анализ и нахождение их решений. Подробно излагаются теория классических сред, сред со сложными физическими свойствами, описано действие электромагнитного поля, а также дана теория размерности и подобия с примерами ревизионного анализа уравнений МСС.  [c.2]


Развитие механики разрушения связано с естественной необходимостью иметь представление о характере и возможностях начавшегося разрушения. А это достижимо лишь тогда, когда исследователь не только знает распределение внутренних напряжений, но и умеет определить допустимое напряжение (называемое критическим), при котором начинается разрушение, а также длину (и, быть может, траекторию) треш,ины, соответствующую приложенным внешним нагрузкам. К сожалению, эти сведения не содержатся в уравнениях классической теории упругости, они дают ответ только на вопрос о распределении возникаюш,их напряжений и деформаций. Интуиция подсказывает нам, что, по-видимому, существует определенная зависимость между нагрузкой п длиной трещины. Для того чтобы установить эту зависимость, приходится привлекать некоторые дополнительные соображения. Одно из таких простых и несомненных соображений предполагает, что разрушение требует определенных затрат энергии и связано с использованием закона сохранения энергии.  [c.80]

Выводом этих уравнений и их решением мы займемся позже. В этой главе мы будем иметь дело с основными теоремами, которые можно получить из закона Гука, не обращаясь к подробным теориям напряжений и деформаций. Это те выводы, которые сам Гук мог бы сделать из своих наблюдений, если бы он обратился к закону сохранения энергии. Однако заметим, что закон сохранения энергии не был четко сформулирован даже во времена появления мемуара Навье, и только в 1837 г. Грин вывел общие уравнения новым методом, в основе которого лежал закон сохранения энергии ).  [c.10]

Из предположения о независимости локальных инвариантов как в смысле соблюдения соответствующих локальных законов, так и сохранения значений физических констант) при калибровке их посредством любых приемлемых процедур макроскопического характера, например используем диаграммы деформирования или ползучести. Это принципиальное по своему содержанию положение является ключевым, так как в результате его справедливости можно гарантировать работоспособность теории в условиях широкого варьирования траекторий нагружения в пространстве напряжений или деформаций режимов температурного, скоростного, силового, деформационного и других воздействий.  [c.13]

Глава носит вводный характер. В ней кратко приведены используемые в дальнейшем определения и общие сведения нелинейной механики сплошных сред [23, 28, 33, 60, 67, 72, 105, 167, 191]. Основными являются понятия градиента скорости и энергетической пары тензоров напряжений п скоростей деформаций, виртуальной мош ности и принципа виртуальных скоростей как а.чьтернатпвной формулировки закона сохранения импульса. При описании реологических свойств материала главное внимание уделено нелинейной теории пластичности в форме теории течения. Приведен конспективный обзор методов моделирования разрушения в квазистатике и динамике.  [c.10]


Для уяснения основ теории пластичности, а также при решении практических задач большую роль играют вариационные принципы теории пластичности. С их помощью можно описать напряженное и деформированное состояние тела в форме требования минимума некоторого функционала при некоторых дополнительных условиях. В качестве последних используются не все уравнения и неравенства задачи, а лишь часть их. Напомним, что вариационные принципы для рассеивающих сред, в которых варьируются кинематически допустимые поля деформаций и статически допустимые поля напряжений, выраженные через упругий потенциал и потенциал рассеивания, были введены еш е Г. Гельмгольцем и Ф. Энгессе-ром. Для идеально пластического тела из принципа Гельмгольца следует, 265 что действительное поле напряжений обращает в максимум мощность поверхностных сил Но поскольку, согласно закону сохранения энергии, эта мощность равна мощности внутренних сил и сил инерции, то и эта последняя должна стремиться к максимуму. Обобщение принципов Гельмгольца и Энгессера на вязко-пластическую среду получили А. А. Ильюшин , а позднее Дж. Г. Олдройд и В. Прагер.  [c.265]

Понятия о напряжении и деформации были установлены Кошп около 1822 г. Вместе с теорией потенциала, теорией функций комплексного переменного, вариационным исчислением и законом сохранения энергии эти понятия составили фундамент, на котором в течение XIX в. были построены начала математической теории упругости и классической гидромеханики силами, главным образом, Навье, Пуассона, Грина, Стокса, Кирхгофа, Гельмгольца, Сен-Венана, Буссинеска, Максвелла, Кельвина, Рэлея, Лява, Лэмба и других2). В 1882 г. Отто Мор опубликовал свою первую статью о графическом представлении напряженного состояния, указав в дальнейшем, что его графический метод приложим также и в анализе распределения моментов инерции в твердых телах.  [c.172]

Механика деформируемого твердого тела в пастоягцее время должна рассматриваться как единая наука, объединяюгцая ряд научных дисциплин, которые по сложившейся исторически традиции излагаются и изучаются в соответствии со следуюгцей схемой теория напряжений п деформаций сплошных тел, основные физические законы сохранения, термодинамика сплошных сред, теория упругости, теория пластичности, теория вязкоупругости и паследствеппой упругости, теория ползучести п механика разрушения твердых тел.  [c.20]

В конце XIX века устрашающие предсказания Баха, Мемке и других по поводу продолжавшегося использования линейной теории упругости в технике не смогли остановить тех, кто принимал участие в фантастическом росте огромного промышленного комплекса XX века, от использования линейного приближения в инженерных расчетах, соответствовавших малым деформациям. С точки зрения экспериментальной физики сплошной среды, однако, точно так же как и с позиций усилий по согласованию микроскопических и макроскопических концепций в терминах атомной физики, а, возможно, также и с точки зрения техники XXI века сохранение нелинейности вплоть до нулевого напряжения имеет немаловажное значение. Баху принадлежит, по-видимому, единственное изложение сопротивления материалов для инженеров, основанное на нелинейной зависимости между напряжением и деформацией. Его Упругость и прочность (Ba h [1902,1]), выдержавшая шесть изданий между 1889 и 19J1 гг., содержала большой раздел, основанный на его степенном законе ).  [c.164]

В. В. Новожилов (1948, 1958) высказал ряд критических замечаний о квадратичной теории. Вкратце они сводятся к следующему. Возможность полной или частичной линеаризации геометрических и статических (динамических) соотношений нелинейной теории упругости определяется чисто геометрическими факторами величиной удлинений, сдвигов и углов поворота как по сравнению с единицей, так и между собой. Поэтому используемый в квадратичной теории недифференцированный (указанным выше образом) подход к упрощению статико-геометрических соотношений носит формальный характер. Далее, для упрощения соотношений, связывающих напряжения и деформации, недостаточна малость компонент деформации по сравнению с единицей. Требуется сравнивать их с физическими константами материала (пределами пропорциональности) — величинами, как правило, весьма малыми по сравнению с единицей. К тому же для квадратичной теории характерно сохранение в выражении для потенциала напряжений, наряду с квадратичными, и кубических членов (пятиконстантная теория Фойхта — Мурнагаца). Для большинства же реальных материалов отклонение от закона Гука обусловливается четными степенями компонент деформации.  [c.75]



Смотреть страницы где упоминается термин Теория деформаций и напряжений. Законы сохранения : [c.7]    [c.181]   
Смотреть главы в:

Прикладная механика деформируемого твердого тела  -> Теория деформаций и напряжений. Законы сохранения



ПОИСК



597 — Деформации и напряжения

Закон сохранения

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Напряжения. Законы сохранения

Сохранение

Теория деформаций

Теория напряжений

Теория напряжений и деформаций



© 2025 Mash-xxl.info Реклама на сайте