Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные законы механики (законы Галилея—Ньютона)

ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ (ЗАКОНЫ ГАЛИЛЕЯ—НЬЮТОНА)  [c.7]

Основные законы механики (законы Галилея—Ньютона)....................277  [c.9]

Основные законы механике (законы Галилея—Ньютона)  [c.277]

Основной закон механики (второй закон Ньютона) был сформулирован Ньютоном в отличие от работ предшествующих ученых в дифференциальной форме. Это позволило рассмотреть многочисленные задачи, где движение определяется переменными силами. Механические задачи, решенные Галилеем, превратились после исследований Ньютона в очень простые частные случаи.  [c.63]


Для изучения курса статики твердого тела рассмотрим аксиомы, лежащие в основе этого курса. Этн аксиомы сформулированы на основе наблюдений и изучения окружающих нас явлений реального мира. Некоторые основные законы механики Галилея—Ньютона являются одновременно и аксиомами статики.  [c.9]

Основные законы механики Галилея — Ньютона сформулированы для свободной материальной точки, т. е. для точки, на перемещение которой не наложено никаких ограничений и движение которой зависит только от начальных условий и действующих на нее сил. Однако как в природе, так и в искусственных сооружениях и машинах, созданных человеком, мы чаще имеем дело с несвободными материальными телами, перемещения которых в пространстве ограничены другими телами. Любое тело, ограничивающее свободу перемещения данного тела, называется связью, наложенной па это тело например, для лампы, подвешенной на шнуре, связью является шнур для книги, лежащей на столе, связью является стол для двери, подвешенной на петлях, связями являются петли и т. д.  [c.96]

Анализ механического движения, начатый Галилеем и другими учеными, завершился в трудах Исаака Ньютона (1643—1727). В своей всемирно знаменитой книге Математические начала натуральной философии Ньютон впервые изложил в единой системе основы классической механики. В этой книге он. ввел основные понятия, характеризующие движение, взаимодействия тел, пространство и время. В ней он сформулировал три основных закона механики и вывел ряд следствий из этих законов. Ньютон показал, как можно применять эти законы к решению различных задач, в том числе задач гидромеханики н небесной механики. Таким образом, Ньютон  [c.141]

Основными понятиями классической механики являются понятия о пространстве и времени, о силе и массе, об инерциальной системе отсчета. Основными законами являются закон инерции Галилея — Ньютона (первый закон Ньютона), уравнение движения относительно инерциальной системы отсчета (второй закон Ньютона), закон равенства действия и противодействия (третий закон Ньютона). Эти понятия и законы были сформулированы И. Ньютоном в его гениальном трактате Математические начала натуральной философии (1687).  [c.7]

Рассмотренные выше основные понятия и законы классической механики понятия о материальной точке, о пространстве и времени, о силе и массе, понятие об инерциальной системе отсчета, законы Ньютона и принцип относительности Галилея — являются фундаментом классической механики. Этот фундамент был построен в результате деятельности многих поколений, был роздан в результате анализа и теоретического обобщения экспериментальных данных. Проверкой правильности основ классической механики, ее соответствия природе является сопоставление выводов теории опять-таки с экспериментом. Так как теория создается человеком в определенные исторические эпохи с определенными воззрениями и техническими возможностями, то любая физическая теория является приближенной, ограниченной. В том числе приближенными, ограниченными являются основные понятия и законы классической механики.  [c.41]


Динамика представляет собой наиболее содержательный раздел механики, в котором движение макроскопических тел изучается в связи с физическими причинами, определяющими то или иное состояние механического движения тела. Основные понятия динамики — это понятия о силе и массе, понятие об инерциальной системе отсчета, а ее основные законы — это законы Ньютона и принцип относительности Галилея. Указанные понятия и законы, являющиеся обобщением экспериментально установленных фактов, были сформулированы И. Ньютоном в 1687 г. в его гениальном трактате Математические начала натуральной философии .  [c.28]

Механика опирается на небольшое число основных законов, которые невозможно вывести непосредственно и к которым пришли длинным путем индукций. Полученные из них следствия подтверждаются наблюдениями. Первая идея этих законов принадлежит Галилею, который при исследовании законов падения тел (наклонная плоскость, маятник, параболическое движение) ввел понятия инерции, ускорения, сложения движений. Гюйгенс был продолжателем Галилея в теории движения точки. Он же первый изучал движение материальной системы. Наконец, Ньютон расширил область механики открытием закона всемирного тяготения.  [c.86]

Основные законы классической механики представляют собой, за исключением некоторых ограничений и изменений в способе расположения, не что иное, как систематическое распространение на материальные точки некоторых сформулированных Галилеем и Ньютоном принципов, управляющих движениями тел солнечной системы.  [c.118]

Завершая развитие идей Галилея и его последователей, великий английский ученый Исаак Ньютон (1643—1727) установил основные законы классической механики ). Ньютон ввел понятие о массе и дал точную формулировку второму закону, служащему основанием всей динамики. Ему же полностью принадлежит открытие двух важнейших законов механики закона равенства действия и противодействия и закона всемирного тяготения.  [c.14]

Классической механикой называется теоретическая механика, построенная на трех основных законах Галилея—Ньютона.  [c.14]

Изучение динамики материальной точки начнем с рассмотрения основных законов классической механики, сформулированных Галилеем и Ньютоном.  [c.97]

Работы Галилея в области механики были продолжены Исааком Ньютоном (1642—1727), углубившим формулировки некоторых законов, открытых Галилеем, и развившим динамику до уровня науки. Механика Галилея — Ньютона, которую принято называть классической, послужила основным фундаментом для дальнейшего интенсивного развития этой науки.  [c.6]

Механика изучает физические законы природы. Законы эти устанавливаются в результате наблюдений, изучения природы. Обобщая многовековой опыт человечества, Галилей и Ньютон сформулировали основные законы механики, которые должны рассматриваться как аксиомы механики. Вся классическая механика строится на этих аксиомах, имеющих в основе экспериментальные факты. Для обоснования статики будем использовать следствия из основных законов Галилея—Ньютона, рассматривая эти следствия как самостоятельные аксиомы.  [c.117]

Первые основные принципы механики связаны с именами Галилея, Ньютона, Лагранжа. В основу механики эти ученые положили понятие пространства, времени, силы и массы. Так, принцип Галилея — Ньютона определяет силу как причину, вызывающую движение материального тела. Законы Ньютона создают основу дальнейшего развития механики. С их помощью можно проанализировать любые механические движения.  [c.500]

Специальная теория относительности, созданная в начале XX в. главным образом благодаря работам Эйнштейна, имеет глубокие корни в прошлом. Эту теорию можно рассматривать как продолжение и обобщение идей, лежащих в основе описания природы, предложенного еще Галилеем и Ньютоном. Фундаментальный постулат теории — так называемый принцип относительности — уже в работах Галилея и Гюйгенса играл определяющую роль в выборе основных законов природы. Справедливость принципа относительности 8 механике является простым следствием уравнений Ньютона. Поскольку последние представляют собой особенно хороший материал для иллюстрации принципа относительности, мы начнем с рассмотрения чисто механических явлений,  [c.10]


Механика точки как наука была основана Галилеем в начале семнадцатого столетия и после его смерти развивалась Гюйгенсом. Основные принципы были установлены и сформулированы Ньютоном, чье великое сочинение Математические начала натуральной философии [1] появилось в 1687 г. В 1743 г. Даламбер [2] распространил законы Ньютона на задачи механики твердого тела. Основания аналитической механики были заложены Эйлером уже в 1736 г. [3], но выдающимся событием в ранней истории этой науки стал выход в свет Аналитической механики Лагранжа в 1788 г. [4]. Развитие аналитической механики со времен Лагранжа связано с именами многих прославленных математиков. Среди тех, кому принадлежат наиболее фундаментальные открытия в этой области, в первую очередь следует назвать Лапласа, Гамильтона, Якоби, Гаусса и Пуанкаре.  [c.11]

Развитие динамики начинается значительно позже. В XV—XVI столетиях возникновение и рост в странах Западной и Центральной Европы буржуазных отношений послужили толчком к значительному подъему ремесел, торговли, мореплавания и военного дела (появление огнестрельного оружия), а также к важным астрономическим открытиям. Все это способствовало накоплению большого опытного материала, систематизация и обобщение которого привели в XVII столетии к открытию законов динамики. Главные заслуги в создании основ динамики принадлежат гениальным исследователям Галилео Галилею (1564—1642) и Исааку Ньютону (1643—1727). В сочинении Ньютона Математические начала натуральной философии , изданном в 1687 г., и были изложены в систематическом виде основные законы классической механики (законы Ньютона).  [c.7]

Сфориз лируйте основные законы механики Галилея — Ньютона.  [c.104]

Развитие динамики начинается значительно позже. В XV—XVI сто летиях вбзникновеиие и рост в странах Западной и Центральной Европы буржуазных отношений послужили толчком к значительному подъему ремесел, торговли, мореплавания и военного дела (появление огнестрельного оружия), а также к важным астрономическим открытиям. Все это способствовало накоплению большого опытного материала, систематизация и обобщение которого привели в XVII столетии к открытию законов динамики. Главные заслуги в создании основ динамики принадлежат гениальным исследователям Галилео Галилею (1564—1642) и Исааку Ньютону (1643—1727). В сочинении Ньютона Математические начала натуральной философии , изданном в 1687 г., были изложены в систематическом виде основные законы так называемой классической механики (законы Ньютона). В дальнейшем эти законы прошли большую опытную проверку и нашли подтверждение в процессе всей общественно-производственной практики человечества. Это позволяет рассматривать наши знания в области механики, основанные на законах Ньютона, как достоверные знания, на которые инженер может смело опираться в своей практической деятельности ).  [c.13]

Создание основ динамики принадлежит великим ученым — итальянцу Галилео Галилею (1564—1642) и англичанину Исааку Ньютону (1643—1727). В знаменитом сочинении Математические начала натуральной философии , изданном в 1687 г., Ньютон в систематическом виде изложил основные законы так называемой классической механики. Эти законы, установленные на основании наблюдений и опытов Нью70на и его предшественников, являются объективными законами природы.  [c.5]

Три закона движения. В основе всей в основе динамики лежат механики, В частности динамики, лежат три закона Ньютона 1) прин- три закона, ягзътаеыые. основными законна инерции, 2) основной, ами Галилея —Ньютона и сформулиро-закои динамики, 3) принцип л  [c.247]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]

При рассмотрении оптики движущихся сред прежде всего необходимо выяснить, как отразится прямолинейное и равномерное движение среды, в которой происходят те или иные физические процессы, на описание их с помошью уравнений Ньютона и Максвелла. Иными словами, нужно выяснить, равноправны ли две инерциальные системы при описании оптических явлений в рамках классической физики. Напо.мним, что основной закон классической механики, а также его следствия имеют одинаковый вид во всех инерциальных системах отсчета, т. е. системах, движущихся равномерно и прямолинейно друг относительно друга. Это положение носит название принципа относительности Галилея.  [c.204]

Механика является одной из древнейших паук, ее возникновение и развитие обусловлено потребностями практики. Однако сведения по механике, накопленные человечеством на протяжении многих столетий, представляли собой, как правило, ряд отдельных разрозненных работ, не собранных в единую научную систему. В создании такой системы большую роль сыграли труды Галилео Галилея (1564—1642), впервые сформулировавшего важнейшие понятия механики идеи об инерции вещества, понятие ускорения, законы сложения движений и скоростей, законы падения тел и т. д. С момента выхода в свет в 1687 г. знаменитого сочинения Исаака Ньютона (1643—1727) Математические начала натуральной философии можно считать, что механика действительно стала наукой. В этом труде Ньютон обобщил как опыт своих предшественников, так и результаты Boeii многогранной научной деятельности и в результате систематически изложил основные законы классической механики.  [c.10]


Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]

Галилеева симметрия в конце XIX в. не включалась в канонический формализм как мы уже отмечали, вопрос о том, какой закон сохранения отвечает ей, оставался открытым. В силу особой роли времени в классической механике галилеево-ньютонова группа как некоторая единая система преобразований, действующая на пространственно-временном многообразии, оставалась неизвестной, несмотря на то, что все ее генераторы были известны, по существу говоря, со времени Галилея и Ньютона. Галилеев принцип относительности имел большое значение для обоснования системы Коперника (Галилей), использовался Гюйгенсом в качестве одного из главных постулатов теории упругого удара, но уже в Началах Ньютона формулировался в виде следствия из трех основных аксиом или законов механики, а в механике XVIII в., как правило, не фигурировал вообще. Во второй половине XIX в. возобновляется некоторый интерес к физическим основам механики, в частности к вопросам об абсолютном пространстве, инерциаль-ных системах отсчета и принципе относительности Галилея (Э. Мах, К. Нейман, Л. Ланге и др.) . Частично это было связано с проблемой увлекаемо-сти эфира в оптике и электродинамике движущихся сред. Однако исследования эти не носили систематического характера, и галилеева симметрия в механике не рассматривалась на одном уровне с евклидовой симметрией. Отчетливое понимание роли галилеевой симметрии в классической механике и открытие галилеево-ньютоновой группы произошло, по сути дела, после открытия теории относительности. Ф. Клейн в этой связи подчеркивал Эта выделенность t (т. е. времени.— В. В.) играла определенную тормозящую роль в истории развития механики. Несмотря на то, что уже Лагранж  [c.238]

Классической механикой называется механика, построенная на трех основных законах Галилея—Ньютона. Эти законы представляют собой результат обобщения  [c.15]

Фундаментальные открытия Галилея, Гюйгенса и Ньютона, приведшие к небывалому расцвету общей механики в конце XVII в., подготовили все предпосылки к мощному скачку в развитии механики жидкости и газа. Особенное значение имело установление Ньютоном основных законов и уравнений динамики. Отныне и гидродинамика начинает переходить от рпссмотреиия отдельных, подчас пе связанных  [c.20]

Система отсчета, по отношению к которой являются справедливыми основные законы классической механики, т. е. основные законы движения, установленные в точном и окончательном виде Галилеем и Ньютоном, называется инерциалъной или галилеевой системой отсчета. Понятно, что в классической механике при изучении движения материальных тел мы должны пользоваться инерциальной системой отсчета. Вопрос о том, возможно ли и каким образом применять законы классической механики к изучению движения, отнесенного к неинерциальной системе отсчета, будет выяснен в динамике. Опыт и наблюдения показывают, что при изучении механического движения в очень многих случаях и почти во всех случаях технической практики систему отсчета, связанную с Землей, можно с большой степенью точности считать инерциальной системой.  [c.33]

В формулировке 2-го тина речь идет не об изолированном теле, а о теле, взаимодействующем с другими телами и, следовательно, основная идея Галилея, о которой говорилось выше, растворена соображениями об изменчивости количества движения точки. Иначе говоря, основная идея Галилея, закона инерции, донолнена элементами, относящимися к сфере действия второго закона Ньютона. Именно об этом говорит фраза ...если только приложенная к нему сила не побуждает его изменить свое состояние . О возможных иоследствиях взаимодействия тела с окружающей средой говорится неонределенно когда взаимодействие приводит к изменению количества движения, а когда нет На эти вопросы отвечает, и вполне определенно, только второй закон механики. Но это, конечно, создает впечатление, будто закон инерции содержится во втором законе Ньютона.  [c.85]

Архимеда, т. е. до времени Стевина (1548—1620), который в 1586 г. впервые занялся механикой наклонной плоскости, и Галилея (1564 — 1642), который сделал первое важное открытие в области кинематики. Таким образом механические принципы, относящиеся к движению тел, не были известны почти до нового времени. Основной ошибкой в рассуждениях большинства исследователей было их предположение о необходимости непрерывно действующей силы для поддержания движения тела. Они думали, что для тела более свойственно состояние покоя, чем движения, что противоречит закону инерции (первый закон Ньютона). Этот закон был открыт Галилеем совершенно случайно при изучении движения тел, скатывающихся по наклонной плоскости на горизонтальную поверхность. Галилей принял следующее основное положение изменение скорости или ускорение определяется силами, которые действуют на тело. Это положение содержит почти целиком два первые положения Ньютона. Галилей применил свои принципы с полным успехом при открытии законов падающих тел и законов движения снарядов. Благодаря своим открытиям он справедливо считается основателем динамики. Он первый применил маятник для измерения времени.  [c.43]

Краткие исторические сведения о развитии кинематики. Если механика как наука о движении и равновесии материальных тел существует десятки столетий, то кинематика как самостоятельный ее раздел возникла сравнительно недавно. Основные понятия кинематики — скорость и ускорение (при прямолинейном движении) — были введены Г. Галилеем (1564— 1642) в первой половине XVII в. Он же сформулировал закон сложения скоростей. Общее попятив ускорения было введено Ньютоном. Кинематика твердого тела была разработана академиком Российской Академии наук Л. Эйлером (1707—1783) в труде Теория движения твердых тел (1765).  [c.144]

Основная серия открытий, создавших динамику, охватывает весь XVII в. В первые десятилетия этого столетия в трудах Галилея был сформулировап закон паденпя тел Галилей же исследовал законы движения падающих тел и законы качания маятника. В 80-е годы того же столетия появились Математические начала натуральной философии Ньютона, в которых проблемы динамики уже получили разностороннюю и глубокую математическую (правда, не аналитическую) разработку. Труд Ньютона был началом нового развития механики на подлинно математической основе, ее совершенствования средствами нового математического аппарата. Основными вехами этого нового периода явились труды Эйлера, прежде всего его двухтомная Механика (1736), и Аналитическая механика Лагранжа (1788).  [c.114]


По мере укоренения динамических представлений скрадывается значительность и принципиальность того концептуального достижения, которое воплощено во втором законе Ньютона. Оно и самому автору, видимо, казалось настолько напрапшвающимся, что он связал с ним имя Галилея. В XVIII в. (и это зафиксировано Лагранжем в Аналитической механике ) во втором законе видят оправданное выводами простейшее допущение о пропорциональности следствия (изменения движения при его отклонении от есте-ственного , т. е. равномерного и прямолинейного) причине (силе). Так ньютонова система механики становится основной и общепринятой, хотя и не называется его именем.  [c.123]

Первые две книги Начал , имеющие одинаковое название О движении тел , являются теоретическим фундаментом третьей. Но как основы теоретических построений Ньютона, именно они и представляют для нас наибольшее значение. Особенно предварительный раздел ( Предисловие автора , Определения , Аксиомы или законы движения ) первой книги , в котором сосредоточены основные механические понятия и законы, составившие основу классической механики. На первый взгляд может показаться странным то, что сейчас в первую очередь ставится в заслугу Ньютону, сам автор не считал самым важным. По в действительности в этом нет ничего удивительного. Пьютон пользовался известными для его современников понятиями, законами, естественно, не подозревая о тех далеко идущих последствиях, к которым привели сделанные им уточнения понятий, добавления к законам, его собственные взгляды на механику Галилея, Декарта, Уоллиса, Гюйгенса.  [c.93]


Смотреть страницы где упоминается термин Основные законы механики (законы Галилея—Ньютона) : [c.4]    [c.108]    [c.108]    [c.272]    [c.275]    [c.224]    [c.203]   
Смотреть главы в:

Курс теоретической механики Ч.2  -> Основные законы механики (законы Галилея—Ньютона)



ПОИСК



Галилей

Галилея

Галилея закон

Закон Ньютона,

Законы механики Галилея — Ньютона

Законы механики основные

Механика Ньютона

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона законы механики

Ньютона основные законы механики

Ньютонова механика

Основные законы

Предмет динамики. Основные законы механики Галилея — Ньютона



© 2025 Mash-xxl.info Реклама на сайте