Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Явление Комптона

Была сделана попытка объяснить явление Комптона с волновой точки зрения, на основе эффекта Допплера. При этом пришлось допустить, что процесс рассеяния происходит в два этапа сначала рентгеновское излучение поглощается, а потом испускается движущимся электроном. Однако подобное объяснение явления Комптона оказалось неудовлетворительным.  [c.347]

Квантовая теория явления Комптона. Явление Комптона было объяснено на основе квантовой теории света. Совпадение результатов квантовой теории с опытными данными говорит в пользу фотонной теории света. Следовательно, явление Комптона является одним из экспериментальных фактов, подтверждающих квантовую теорию света. Эффект Комптона ценен еще и тем, что им проверялся в процессах с участием фотонов не только закон сохранения энергии (как это было при фотоэффекте), но также и закон сохранения импульса.  [c.347]


Кратко изложим квантовую теорию явления Комптона.  [c.347]

Несмещенная линия в явлении Комптона объясняется рассеянием также от нейтрального атома (если электрон не будет оторван от атома).  [c.348]

Сущность явления Комптона и его законы  [c.652]

Явление Комптона состоит в изменении длины волны рентгеновских лучей, происходящем при рассеянии их легкими атомами. Впоследствии это явление было обнаружено н при рассеянии тяже-  [c.652]

Все перечисленные выше особенности явления Комптона можно истолковать, рассматривая его как процесс столкновения рентгеновских фотонов с атомами вещества.  [c.654]

Явление изменения длины волны при рассеянии света можно было бы объяснить с волновой точки зрения при помощи явления Допплера электроны, рассеивающие рентгеновские лучи, под действием их выбрасываются из атомов по различным направлениям с разными скоростями. Таким образом, рассеянное излучение должно иметь измененную длину волны в зависимости от скорости и направления движения рассеивающих электронов. Вычислив, как должны были бы двигаться рассеивающие электроны, нетрудно получить классическую картину явления Комптона.  [c.656]

Как уже указано, можно рассчитать взаимные направления электронов и рассеянных лучей, необходимые для классического объяснения явления Комптона при помощи эффекта Допплера. С другой стороны, можно вычислить это распределение направлений электронов и фотонов по теории упругих столкновений. Э-ги две точки зрения приводят к разным результатам. Упомянутые опыты свидетельствуют в пользу квантовой теории явления, так что объяснение его с помощью аспекта Допплера следует признать неудовлетворительным. Таким образом, явление Комптона, подобно основным законам фотоэффекта, говорит в пользу представления о фотонах.  [c.656]

Совокупность сведений о фотоэффекте видимых и рентгеновских лучей, равно как и данные о явлении Комптона, убедительно свидетельствуют в пользу гипотезы фотонов. Для характеристики ее плодотворности представляется интересным рассмотреть неко-  [c.656]

К числу таких явлений можно отнести эффект Допплера, который был впервые объяснен на основе волновой теории и с этой точки зрения уже был рассмотрен в гл. XXI. Эффект Допплера — типичное волновое явление, и истолкование его на основе теории фотонов представляется на первый взгляд затруднительным. Однако удается показать возможность такой интерпретации путем рассуждений, очень близких к рассуждениям, служащим для объяснения явления Комптона. Для простоты ограничимся столь малыми скоростями движения источника и, при которых можно пренебречь членами второго порядка относительно и/с. Тогда по принципу Допплера изменение частоты излучаемого источником света выразится формулой  [c.657]


Исследование рассеяния рентгеновских лучей веществом привело в 1923 г. Комптона к открытию важного явления, значительно углубляющего наши представления о фотонах.  [c.652]

Но если узлы на рис. 7.21 и им подобные реально существуют, то в вакууме возможны процессы типа изображенного на рис. 7.24, в которых из ничего рождается электронно-позитронная пара и фотон, которые некоторое время спустя ничем же и поглощаются. Проблема таких, как их называют, вакуумных петель до сих пор остается не решенной математической задачей. С одной стороны, как мы только что указывали, соответствующие этим петлям узлы вносят экспериментально наблюдаемый вклад в такие хорошо изученные явления, как комптон-эффект. С другой стороны, если бы в вакууме все время хаотически рождались и исчезали такого рода образования, то на них, например, происходило бы беспорядочное рассеяние света. Но свет, даже идущий от удаленных галактик, при прохождении через пустое пространство рассеяния явно не претерпевает. Однако, если вакуум представляет собой наинизшее энергетическое состояние, то рассеяние на нем свободных частиц запрещено законами сохранения. Исходя из этого, сейчас считают, что вакуумные петли ничем себя не проявляют в вакууме, но могут проявлять себя наблюдаемым образом, например, в присутствии внешних полей ). Наконец, именно сумма вакуумных петель приводит к отмеченному в 2, п. 10 и описываемому в 8, п. 15 явлению спонтанно нарушенной симметрии вакуума.  [c.328]

При взаимодействии у-излучений с веществом наблюдаются три основные явления фотоэлектрический эффект, эффект Комптона и образование пар электрон-f позитрон.  [c.65]

Из явлений микромира отметим эффект Комптона (см. 9.6), при котором рентгеновское излучение передает часть своего импульса электронам, на которых оно рассеивается, и тем самым сообщает этим электронам отдачи большие скорости. Импульс излучения обнаруживает себя также в отдаче , которую испытывает атомное ядро при испускании гамма-лучей. Это явление вполне аналогично отдаче ружья при выстреле. Эффект отдачи в принципе существует и при испускании света атомами, но в оптической области он приводит к ничтожному сдвигу частоты испускаемого света (значительно меньшему естественной ширины линии).  [c.171]

Указанное Комптоном различие между М и Мо давало повод думать, что при вычислении силы реакции пара следует учитывать всю массу М испаряющегося металла, а не ее часть Мо, определяемую в опытах. При таком способе расчета отпадает необходимость в постулировании высоких скоростей атомов и соответствующих им чрезвычайно высоких температур. Сам Комптон предложил иную интерпретацию рассматриваемых явлений, при которой давление разряда на катод связывалось с отдачей ионов, нейтрализующихся у поверхности катода. Как показывают простые соображения [Л. 43], сама по себе ионная бомбардировка катода не должна приводить к возникновению сил, если только вся энергия, приобретенная ионами в ускоряющем поле электрода, передается целиком катоду. Основываясь на ряде данных [Л. 30], Комптон пришел к выводу, что при нейтрализации ионов у катода последнему передается лишь часть их энергии. Вводя в рассмотрение коэффициент аккомодации g  [c.28]

Явление Комптона. Исследуя в 1923 г. рассеяние рентгеновских лучей, Комптои пришел к открытию, известному теперь в литературе под названием явления Комптона.  [c.347]

Поглощенная световая энергия в самом общем и наиболее распространенном случае переходит в тепло, несколько повышая температуру поглощающего тела. Но нередко лишь часть световой энергии переходит в тепло, другая же испытывает иные превращения, вызывая те или иные действия свел а. В настоящем разделе мы не будем рассматривать тех случаев, когда в результате воздействия света тело само становится источником и испускает излучение собственной или вынужденной частоты. Часть таких процессов (излучение вынужденных частот) была рассмотрена в гл. XXIX (рассеяние света). Другая их часть (излучение собственных частот) будет обсуждаться в гл. XXXVIII. Настоящий же раздел посвящен вопросам превращения световой энергии в механическую энергию электронов (фотоэффект и явление Комптона) или всей поглощающей системы (давление света), а также различным химическим действиям света (фотохимия, фотография, физиологическая оптика).  [c.633]


Рассеяние света может происходить на электронах среды (явление Комптона), молекулах вещества (комбинационное рассеяние), флуктуации плотности среды (рассеяние Ман-дельштама-Бриллюена). Рассеяние Тиндаля характерно для мутных сред с размерами частиц порядка долей длины волны света, а рассеяние Ми - для сред с частицами, размеры которых составляют несколько длин волн света.  [c.57]

Из других проблем, которые легко можно рассмотреть с помо1цью теории, упомянем опыт Гейгера-Боте, обнаруживший в явлении Комптона связь. между лшмен-том времени появления рассеяния электрона и момеито.м времени появления рассеянного при этом процессе кванта. Из теории сразу следует, что эти моменты времени должны в пределах точности геометрической оптики и ширины определяющего начальное состояние волнового пакета находиться в определённых границах ).  [c.325]

При экспериментальном исследовании этого явления, впервые пpoвeдe п oм Комптоном (1922 — 1923), было установлено, что наряду с закономерностями, хорошо объясняемыми электромагнитной теорией (поляризация рассеянного излучения и его интенсивность), наблюдаются эффекты, истолкование которых в рамках этой теории невозможно. Так, например, было обнаружено появление спутника у основной линии, совпадающей по длине волны с облучающими 8.26. Эффект Компто-объект характеристическими лучами. Ока- на на Х-линии молиб-залось, что смещение ДХ этого спутника не  [c.447]

Комптон обратил внимание на то, что первая и вторая закономерности весьма сходны с картиной упругого рассеяния частиц, где энергия рассеянной частицы отлична от первоначальной энергии и зависит от угла рассеяния (см. 19, п. 1). В связи с этим он предложил квантовую интерпретацию явления рассеяния, согласно которой рентгеновские лучи надо рассматривать как поток частиц-фотонов, упруго рассеивающихся на других частицах —электронах. Так как электроны содержатся во всех атомах и для них выполняется условие Ef > Ее (связь с атомом несущественна), то рассматриваемый процесс можяо описать в любой среде как рассеяние фотона на свободном электроне. В связи  [c.247]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

На основании дифракционных явлений были созданы приборы, позволяющие измерить с большой точностью длины волн рентгеновского излучения. Это открыло дорогу к широкому кругу экспериментов в области физики рентгеновских лучей, приведших к открытию новых явлений, например эффекта Комптона (см. 2). Основанный на этих явлениях рентгеноструктурный анализ остался и до настояидего времени одним из очень эффективных методов изучения структуры вещества. Использование дифракции на кристаллах для управления рентгеновскими лучами лежит в основе рентгеновской оптики, получившей особенно большое развитие в последние годы.  [c.52]

В начале этого параграфа мы говорили, что в квантовую электродинамику можно наряду с электронами и позитронами включить еще положительный и отрицательный мюоны. Удивительным свойством мюона является его полное сходство с электроном во всех свойствах, кроме массы. Обе частицы электрически заряжены и имеют спин половина. Обе частицы не подвержены сильным взаимодействиям. Электромагнитное взаимодействие для обеих частиц совершенно одинаково вплоть до таких тонких деталей, как, скажем, поправка (7.95) к магнитному моменту (но, конечно, в выражение для магнетона Бора у каждой частицы входит своя масса). Забегая вперед, скажем, что и в отношении слабых взаимодействий электрон и мюон ведут себя совершенно одинаково. И то, что в слабых взаимодействиях мюон распадается на электрон (см. (7.50)), а не наоборот, получается только потому, что мюон тяжелее электрона. Почему в природе существуют две частицы, так сильно различающиеся по массе и столь сходные во всех остальных отношениях Это, пожалуй, один из самых загадочных вопросов физики элементарных частиц. Что же касается практического участия мюонов в квантовоэлектродинамических процессах, то оно в общем-то невелико из-за большой массы мюона. Если явления с виртуальными электронами разыгрываются в области HIm , то явления с виртуальными мезонами ограничиваются областью, размеры которой в двести раз меньше. Поэтому сечение процессов с участием виртуальных мюонов (комптон-эффект, рождение пар и т. д.) на 4—5 порядков меньше соответствующих электронных сечений. Например, сечение комптон-эффекта уменьшается в 200 = 4-10 раз из-за того, что в знаменателе формулы для г1 (см. (7.85)) стоит квадрат массы. Кроме того, про-  [c.341]

Если электрон, на к-ром рассеивается фотон, не покоится, а является ультрарелятивистским с энергией то при столкновсннн электрон торяет, а фотон приобретает энергию и длина волны света прп столкновении уменьшается (частота увеличивается). Такое явленно наз. обратным комптон-эффектом. Если направления скоростей нач. фотонов распределены изотропно, то ср. энергия рассеянных фотонов при обратном К. э. определяется соотношением  [c.431]


Э. в. разл, диапазонов X характеризуются разл. способами возбуждения и регистрации. Они по-разному взаимодействуют с веществом. Процессы излучения и поглощения Э, в, от самых длинных волн до ИК-излучеиия достаточно полно описываются соотношениями электродинамики. На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оп-тич. диапазоне и тем более в диапазонах рентг. и у-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов. Во мн. случаях эл.-магн. излучение ведёт себя не как набор монохроматич. Э. в. с частотой ш и волновым вектором Л, а как поток квазичастиц—фотонов с энергией Лт и импульсом p = h[c.543]

ЛСЭ используют ускорители электронных пучков высокой энергии ( > 10 МэВ), но небольших токов (/- 1—10 А). При этих условиях, как уже упоминалось выше, излучение света можно рассматривать как комптоновское рассеяние виртуальных квантов магнитного поля на отдельных электронах (комптонов-ский режим ЛСЭ). Были запущены также ЛСЭ, использующие электронные пучки низкой энергии Е = 1—2 МэВ) со значительно большими токами (/ 10—20 кА). В этом случае элек-трон-электронное взаимодействие становится столь сильным, что в электронном пучке во время взаимодействия с электромагнитной волной в ондуляторе возбуждаются коллективные колебательные движения (плазменные волны). Излучение теперь возникает вследствие рассеяния виртуальных квантов магнитного поля на этих коллективных движениях, а не на отдельных электронах. При этом частота излучения уже не дается выражением (6.58), а в действительности сдвигается в низкочастотную область на величину, определяемую этим коллективным движением. Это явление аналогично комбинационному (рамановско-му) рассеянию света на молекулярных колебаниях поэтому соответствующий лазер называется ЛСЭ в рамановском режиме. Вследствие более низкой энергии электронов, участвующих в работе лазера, все эти лазеры генерируют в миллиметровом диапазоне.  [c.433]

В основе рентгеновской оптики скользящего падения лежит явление полного внешнего отражения (ПВО), открытое Комптоном в 1922 г. [50] и заключающееся в том, что эффективное отражение рентгеновского излучения от однородного зеркала возможно только при падении пучка под малыми скользящими углами, меньшими некоторого критического значения (см. гл. 1). Джентц [481 и затем Эренберг [34] показали, что о помощью вогнутых зеркал можно фокусировать рентгеновское излучение.  [c.157]

Раким образом, квант монохроматического электромагнитного поля во взаимодействии с веществом проявляет себя как частица с энергией и импульсом, определяемыми соотношениями (9.48). Взаимодействие света с веществом можно рассматривать как совокупность элементарных актов поглощения, испускания и рассеяния фотонов, в каждом из которых выполняются законы сохранения энергии и импульса. В рассмотренных выше явлениях фотоэффекта и тормозного излучения мы учитывали только закон сохранения энергии при поглощении или испускании фотона, так как массивный катод мог, не участвуя в энергетическом балансе, принять на себя любой импульс и этим обеспечить выполнение закона его сохранения. Но существуют явления, в которых импульс фотона обнаруживает себя явно и соотношение р=Йк допускает экспериментальную проверку. В качестве примера рассмотрим рассеяние рентгеновского излучения электронами, впервые количественно исследованное Комптоном в 1923 г.  [c.469]

Подстановка характерной для ртутной дуги величины катодного падения i/ =10 в и /г=0,00209 при использовании разумных значений g = 0,9 и /С=0,8 приводит к результату i p = 41 дин1а, что совпадает с величиной, приведенной в работе Кобла. Как видно из этого расчета, рассмотренный Комптоном механизм возникновения силы способен объяснить оказываемое разрядом давление на катод без учета силы реакции вновь испаряющихся атомов. В качестве одного из возражений против такой интерпретации явлений Слепян и Мэзон [Л. 44] указали на невозможность объяснения этим путем найденных Танбергом и Коблом высоких значений скорости струи паров металла, которую они оценили эквивалентной 70 в. Действительно, при механизме отдачи, указанном Комптоном, скорость отраженных атомов должна соответствовать лишь незначительной части катодного падения и во всяком случае не может превосходить величину, эквивалентную U . О несостоятельности предложеи-ной Комптоном интерпретации сил и природы быстрых струй паров металла свидетельствуют также данные о силах отдачи, испытываемых анодом [Л. 50], и приведенные рядом авторов данные о существовании анодных струй [Л. 45 и 53].  [c.29]

Первоначальная теория дуги связывала прохождение тока в разрядном промежутке со способностью катода эмиттировать электроны под влиянием высокой температуры, источником которой могут явиться искусственный подогрев катода или бомбардировка его положительными ионами, возникающими в результате ионизации газа. Термоэлектронная теория оказалась в состоянии объяснить все наблюдавшиеся явления дугового разряда, пока ее применяли к атмосферной дуге с угольными электродами, примеры чего можно найти в работе Комптона [Л. 142], а также в прежних обзорах [Л. 143]. Более того, первое время казалось возможным распространить теорию на металлические дуги даже того типа, при котором вся масса металла катода остается относительно холодной. Для этого достаточно было допустить существование высоких температур в микрообъемах металла, расположенных вблизи поверхности в области локализации разряда. Некоторые наблюдения, однако, ставили под сомнение возможность применения термоэлектронной теории к металлическим дугам. Среди них особенно важную роль в свое время сыграли опыты Штольта [Л. 144], показавшего впервые, что катодное пятно способно перемещаться по медному катоду с большой скоростью, при которой казалось немыслимым сильное нагревание меди даже на малых участках поверхности, занимаемых пятном. В настоящее время, когда стали известны почти фантастические значения плотности тока в области катодного пятна, такого рода доводы потеряли свою убедительность. Гораздо более серьезное возражение универсальности термоэлектронной теории выдвинул Слепян [Л. 145], указав, что большинство металлов не могут быть нагреты до температур, достаточных для заметной эмиссии. Это особенно очевидно по отношению к таким металлам, как ртуть, медь и серебро. В поисках выхода из создавшегося затруднения Гюнтершульце [Л. 7] предположил, что температура кипения металла в области катодного пятна настолько резко повышается под влиянием увеличенного местного давления пара, что металл способен нагреваться до температур, достаточных для электрон--ной эмиссии. Подтверждение этой догадки Гюнтершульце вн-54  [c.54]


Смотреть страницы где упоминается термин Явление Комптона : [c.652]    [c.653]    [c.655]    [c.656]    [c.657]    [c.659]    [c.69]    [c.71]    [c.247]    [c.178]    [c.96]    [c.644]    [c.300]    [c.301]    [c.274]    [c.422]    [c.151]    [c.192]   
Смотреть главы в:

Оптика  -> Явление Комптона


Оптика (1976) -- [ c.652 ]



ПОИСК



Комптон

Сущность явления Комптона и его законы

Теория явления Комптона

Явление



© 2025 Mash-xxl.info Реклама на сайте