Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Натрий Механические свойства

Среда Кислоты Едкий натр Механические свойства резин  [c.126]

Наиболее эффективным способом травления в случае образования больших, плотных и клейких окалин является использование расплавленных солей (едкого натра или гидрида натрия NaH). Химическое воздействие на окалину расплавленной соли сочетается с нарушением сплошности окалины за счет различия коэффициентов линейного расширения окалины и основного металла под действием тепла при погружении изделия в ванну с расплавленным раствором. Этот метод травления находит все более широкое применение и дает наибольший эффект при сведении процессов удаления окалины и термообработки в одну операцию. Однако при этом требуются специальное оборудование и квалифицированные рабочие. Процесс является дорогостоящим и опасным. Кроме того, его нельзя применять в том случае, если воздействие высоких температур неблагоприятно скажется на механических свойствах металла, с которого удаляется окалина. Что касается химической очистки, то электрохимическое воздействие (анодная либо катодная поляризация) или использование ультразвука может улучшить действие травления.  [c.60]


Сплавы заэвтектического состава имеют в структуре много крупных первичных кристаллов кремния и поэтому они плохо модифицируются солями, содержащими натрий, и отливки из таких сплавов имеют относительное удлинение порядка 0,1—0,5%. Значительно больший эффект модифицирования этих сплавов получается путем воздействия фосфорсодержащими веществами, серой или углеродсодержащими солями. Влияние структуры на механические свойства сплавов с разным содержанием кремния приведено в табл. 54.  [c.85]

Механические свойства—Влияние кальция, лития, натрия 4 — 206  [c.16]

Для создания защитной атмосферы в установках с натриевым теплоносителем рекомендуются гелий и аргон, содержащие кислород в тысячных долях процента [1,51]. Водород значительно диффундирует через нержавеющую сталь уже при температуре 600° С, и поэтому для создания защитной атмосферы мало пригоден [1,52]. В ряде случаев для очистки расплавленного натрия и защитного газа от кислорода и других примесей (воды, водорода, азота, углерода) рекомендуется контактировать натрий и газ при температуре свыше 500° С с цирконием, титаном [1,52] или сплавом 50% титана и 50% циркония. В последнем случае в системе не образуется твердых частиц. В атмосфере азота происходит азотирование нержавеющей стали в расплавленном натрии при температуре свыще 480° С [1,51], что отражается на механических свойствах материала. Очищать натрий от окислов можно также путем пропускания натрия (при температуре 250° С) через фильтр, изготовленный из аустенитной нержавеющей стали.  [c.46]

Постоянная С изменяется с повышением температуры в соответствии с законом Аррениуса. Для сплава циркалой 2 постоянная С в четыре раза меньше, чем у чистого циркония. Энергия активации реакции окисления циркония равна 29200 кал. При наличии водорода в натрии образуется гидрид натрия. Последний не реагирует с аустенитной нержавеющей сталью, но растворяется в металлическом цирконии. Скорость этой реакции возрастает с повышением температуры. Растворение водорода в цирконии мало влияет на механические свойства последнего.  [c.47]

Некоторые стали, содержащие кремний и титан в количестве соответственно до 2,6 и 1%, заметно меняют механические свойства после пребывания в среде натрия при температуре около 700 С. Их прочность возрастает, а пластические свойства ухудшаются вследствие образования вторичных карбидов.  [c.290]

Кроме ускорения процесса переноса массы кислород, находящийся в жидком натрии, вызывает охрупчивание ряда сталей после выдержки в теплоносителе [215, 216]. Этот эффект весьма опасен, так как приводит к резкому изменению механических свойств материала без существенного повреждения его поверхности он, по-видимому, имеет одинаковую природу с эффектом внутреннего окисления сплавов, так как характеризуется аналогичными проявлениями [217].  [c.263]


Гидрид натрия (NaH) плавится под давлением при 800° С. В металлическом натрии при температуре 250°С растворяется около 0,003% гидрида, при 400° С —около 1,5%. Растворение сопровождается диссоциацией гидрида на металл и атомарный водород, растворимый в жидком металле. При охлаждении металла, насыщенного гидридом, на охлаждаемых поверхностях теплообменника возможно образование твердых частиц гидридов и увеличение контактных термических сопротивлений и в здоровых трубах пучка, а также диффузия атомарного, водорода в металлическую стенку труб пучка с соответствующими изменениями их механических свойств. На участках с высокой температурой гидрид диссоциирует при температуре 420° С, например, упругость диссоциации NaH превышает 1 атм.  [c.270]

Жидкий металл и особенно примеси, содержащиеся в нем, могут повлиять на механические свойства металла емкости путем растворения и диффузии в твердый металл стенки с образованием новой фазы. Известно, например, что натрий диффундирует в медь при 1000° С с образованием новой фазы и вызывает охрупчивание ее. Интерметаллиды образуются и при длительной выдержке ванадия в жидком свинце и его сплавах при 1000° С [94]. Перенос углерода металлическим натрием часто вызывает науглероживание (цементацию), опасное для хромоникелевых сталей.  [c.301]

Перлитные стали склонны к обезуглероживанию в среде натрия и, как следствие, к потере механических свойств и длительной прочности при температурах выше 500—520 °С.  [c.62]

В настоящее время, исходя из имеющихся данных, можно оценить изменение механических свойств в натрии, что дает возможность при конструировании узлов установки определить допустимый срок службы материалов. Однако пока нет достаточных данных по длительным испытаниям на ползучесть, усталость и их совместному действию в условиях, близких к реальным по нагрузкам и различным концентрациям углерода, и гарантий от случай ных разрушений отдельных элементов конструкции, вызванных структурными дефектами.  [c.162]

Измельчение структуры способствует улучшению механических свойств металла. На практике для измельчения структуры металлов и сплавов широко применяют технологическую операцию, называемую модифицированием. Она состоит во введении в жидкий сплав перед разливкой специальных добавок — модификаторов. В качестве последних используют поверхностно-активные вещества (например, бор в сталях, натрий в алюминии и его сплавах), а также элементы, образующие тугоплавкие тонкодисперсные частицы (например, титан, цирконий в алюминии и его сплавах алюминий, титан в сталях). Модификаторы добавляют в сплавы в количествах от тысячных до десятых долей процента.  [c.73]

По значению электродного потенциала (фш = = —0,25 В) никель занимает промежуточное положе-кие между железом и медью. Он пассивируется легче, чем медь, менее склонен к комплексообразованию и поэтому обладает более высокой коррозионной стойкостью, чем медь, превосходя последнюю также по механическим свойствам. В расплавах натрия и щелочей никель можно применять до 540—590 °С, в хлоре и хлористом водороде —до 540 °С.  [c.116]

К модификаторам II рода относятся элементы или их соединения, которые адсорбируются на гранях зарождающихся кристаллов и тормозят их рост. Адсорбция не происходит на всех гранях равномерно, в результате чего происходит задержка в развитии отдельных граней кристалла, что приводит к изменению его формы. Кроме того, замедление скорости роста кристалла сопровождается увеличением числа центров кристаллизации, что способствует измельчению зерна. Хорошими модификаторами II рода в сталях являются На, К, КЬ, Ва, редкоземельные элементы (РЗМ). Алюминиевые сплавы (силумины) приобретают мелкозернистое строение и лучшие механические свойства (повышается пластичность) после обработки сплава в жидком состоянии фтористым натрием (МаР) юти легкоплавким тройным модификатором 25% ХаР+б2,5%ЫаС1+12%КС1.  [c.46]

Хорошими модификаторами в стали являются Па, К, КЬ, Ва, редкоземельные элементы (РЗМ). Алюминиевые сплавы (силумины) приобретают мелкозернистое строение и лучшие механические свойства (повышается пластичность) после обработки сплава в жидком состоянии фтористьш натрием (ХаР) или легкоплавким тройным модификатором 25% НаР+62,5% Na HI2.,5%K l.  [c.20]


Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повышения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия пол чают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]

Синтетический бутадиеновый каучук, используемый в качестве электрической изоляции, должен быть тщательно отмыт от остатков катализатора (натрия), которые могут ухудшать его электроизоляционные свойства. При нагреве до 200—300 °С СКБ (без добавки вулканизирующих веществ) дополнительно полимеризуется в результате частичного разрыва двойных связей и переходит в эскапон, по механическим свойствам приближающийся к эбониту, но более нагревостойкий и мало подверженный действию кислот и органических растворителей. По мере увеличения времени полимеризации материал получается все более твердым. Эскапон, название которого происходит от первых букв слов синтетический каучук и фамилии изобретателя материала Л. Т. Пономарева, имеет высокие электро-  [c.158]

Таблица 17.6. Скорость переноса масс и механические свойства стали 1Х18Н10Т после испытаний в жидком натрии Таблица 17.6. Скорость <a href="/info/30672">переноса масс</a> и <a href="/info/58648">механические свойства стали</a> 1Х18Н10Т после испытаний в жидком натрии
Таблица 17.11. Механические свойства стали Х1вН15МЗБ после испытаний в натрии под азотом Таблица 17.11. <a href="/info/58648">Механические свойства стали</a> Х1вН15МЗБ после испытаний в натрии под азотом
Таблица 17.12. Механические свойства стали Х16Н15МЗБ после испытаний в азоте над натрием Таблица 17.12. <a href="/info/58648">Механические свойства стали</a> Х16Н15МЗБ после испытаний в азоте над натрием
Присутствие в сплаве примесей натрия — вызывает горячелом-кость калия — понижает механическую прочность алюминий увеличивает твердость марганец — механические свойства и коррозионную стойкость кадмий — вязкость кремний — устойчивость при повышенных температурах.  [c.202]

С повышением содержания Si в сплавах понижается значение коэффициента термического расширения, но вместе с этим получается и более грубая структура, способствующая охрупчиванию сплавов и ухудшающая обрабатываемость резанием. Для измельчения структуры, повышения механических свойств (особенно пластичности) и улучшения обрабатываемости резанием сплавы АЛ2, АЛ4, АЛ9 обычно модифицируют путем воздействия фтористохлористыми солями, содержащими натрий.  [c.84]

Хромистая сталь с содержанием 23—32%Сг (марки Х25 и ХЗО) относится к ферритному классу и применяется без термообработки. Она устойчива против ксгррозии в условиях, общих для хромистых сталей, а также против действия горячей фосфорной кислоты (концентрацией до 70—75%), горячей вытяжки фосфорной кислоты из флотированного апатита, кипящей уксусной кислоты, растворов гипохлорита натрия, дымящей азотной кислоты, концентрированной серной кислоты и пр., и очень устойчива против коррозии при высоких температурах. Сталь применяется для изготовления деталей аппаратуры, не испытывающих ударных нагрузок, в химической и других отраслях промышленности. По механическим свойствам сталь близка к хромистой с содержанием 16—18% Сг. Для получения более высоких пластических свойств после отжига при 850° требуется быстрое охлаждение, Существенным недостатком стали, общим для всех железохромистых сплавов ферритного класса, является её хрупкость, проявляемая в условиях динамических нагрузок. Введение в сталь 0,2—0,3% N2 или 1 —1,2% Т1 в значительной степени устраняет хрупкость.  [c.489]

MeHHjoT механические свойства сплавов, а кадмий лишь немного увеличивает твёрдость. Значительное влияние оказывает скорость охлаждения при литье. При вылёживании эти сплавы упрочняются вследствие распада твёрдого раствора натрия и лития в свинце, а механические свойства приобретают почти постоянные значения лишь спустя 5 — 6 дней после литья. При достижении температуры подшипника 60—70° С и выше прочность баббита падает, как это обычно наблгодаето у сплавов, подвергающихся старению. Щёлочноземельные баббиты обладают наименьшей теплопроводностью и наибольшим удельным весом (для Bahnmetall 10,56) из всех типов баббитов на оловянной и свинцовой основах также велик у них коэфициент линейного расширения (32,7 10 в интервале 20—100 С и. 36,3 10 в интервале 20—200° С), в связи  [c.206]


В коррозионном отношении литий подобен натрию и сплаву натрия и калия. В отличие от последних литий при взаимодействии с воздухом образует коррозионноактивные нитриды. Следы азота, как и кислорода, в литии имеют большое значение с точки зрения ускорения коррозионных процессов [1,59]. После испытания в литии содержание углерода в сталях 20 и 45 при температуре 830 С в течение 230 час снизилось. Изучение микроструктуры этих сталей показало, что перлит в них отсутствует. В сталях 45 и У-7 появились пустоты. Потери веса сталей и количество лития, проникшего в них, тем значительнее, чем больше в стали углерода. Литий, взаимодействуя с углеродом, содержащимся в стали, образует карбиды, которые легко разлагаются водой с образованием ацетилена. Вероятно, эти обстоятельства способствуют образованию пустот в металле. Механические евойства углеродистых сталей (прочность, пластичность) после испытания в литии резко снизились. Снижение механических свойств происходит в тем большей степени, чем значительнее содержание углерода в исходном состоянии. Железо, содержащее 0,04% углерода, показало удовлетворительную коррозионную стойкость при испытании в литии.  [c.50]

Образование твердых растворов и соединений между твердым и жидким металлами может значительно усилить коррозионное действие жидкометаллической среды. Для определения возможности такого действия необходимо знать диаграммы состояния компонентов данного конструкционного материала и жидкого металла. В ряде случаев действие этого вида приводит к ухудшению механических свойств конструкционных материалов. Установлено, наиример, что диффузия натрия в медь при 1000° С приводит к образованию новой фазы, охрупчивающей металл. Образование интерметаллического соединения на поверхности ванадиевого образца наблюдалось после его выдержки в жидком свинце ири 1000° С в течение 100 ч [196].  [c.262]

Наличие кислорода в расплавленном натрии приводит не только к поверхностной коррозии, но может ухудшать и механические свойства стали. По данным В. С. Ляшенко и др. [216], контакт сталей 1Х18Н9Т и ЭИ-448 с жидким натрием, содержащим 0,02 вес. % Ог, в течение 4000 ч привел к катастрофическому охрупчива-  [c.274]

Хеллем . В 1962 г. была пущена в эксплуатацию АЭС Хел-лем . При работе установки были определены коэффициенты теплопередачи трех ПТО по измеренным температурам и расходам теплоносителей. Эти измерения проводились как в первом, так и во втором контурах при нескольких уровнях рабочей мощности [И]. Полученные результаты показали, что значения опытных коэффициентов теплопередачи расходились с расчетными на 10 % или даже меньше. ПТО работали удовлетворительно. За несколько месяцев работы случился только один перебой. Образовалась течь между первым и вторым контурами. Течь образовалась в результате разрушения трубы в одном из ПТО. Дефектный ПТО был удален из установки, после чего была обнаружена лопнувшая теплообменная труба. Эта и еще 16 других труб были сняты, чтобы определить основную причину разрушения, а также установить состояние оставшихся труб. Были проведены детальные исследования металлографических и механических свойств материалов труб. Эти испытания показали, что поломка трубы произошла из-за вибрации, вызванной динамическим воздействием потока натрия. В результате в ПТО на входе вторичного теплоносителя перед трубным пучком были установлены дырчатые листы для гашения скорости потока. В пяти оставши.хся ПТО была проделана такая же операция без удаления последних из системы. В корпусе ПТО были прорезаны окна, которые после доработки были закрыты приваренными листами металла. В дальнейшем ПТО работали удовлетворительно.  [c.276]

Адсорбционно-активная среда сама по себе не вызывает разрушения, она способствует, помогает ему. Наличие адсорбционного механизма воздействия на твердые тела означает, что данные о механических свойствах материалов, полученные при измерениях в одних средах, нельзя без проверки переносить на другие среды. По данным работы [4], время до разрушения образцов из сплава ЭИ437Б при температуре 800° С в натрии могло быть в 5 и более раз короче (в зависимости от нагрузки), чем при испытании на воздухе, заметно больше была и скорость ползучести в натрии.  [c.25]

Модификаторы, которые являются поверхностно-активными веществами, концентрируются в поверхностных зонах кристаллов. Широко известен способ модифицирования силумина солями натрия (Na l + КаР), в результате которого происходят измельчение структуры эвтектики (а + 81) и снижение температуры ее кристаллизации, а также увеличение доли а-твердого раствора. Все это обеспечивает значительное (в 2 раза) повышение пластичности сплава 8 1—2% (до модифицирования) 5 > 3—4% (после модифицирования). Модифицирование серого чугуна магнием приводит к изменению формы графитовых включений с пластинчатой на глобулярную (шаровидную), что способствует повышению комплекса механических свойств.  [c.300]

Даль установил также, что из испытанных фунгицидов только ацетат меди, сульфаты меди и железа существенно ухудшают механические свойства кожи в условиях ускоренного старения (см. рис. 7). Хлористый натрий и все прочие испытанные фунгициды с органическими соединениями хлора и меди не оказывают неблагоприятного влияния на кожу. Многие из них даже оказывают заш итное действие. Объясняют защитное действие на краснодубную кожу с высоким содержанием жира (12%) тем, что смесь, содержащая 20% минерального масла, производит дополнительное жирующее действие. Тем самым снижается трение волокон кожи и повышается ее механическая прочность. Из кожи с содержанием 30% жиров часть их извлекается органическим растворителем, что способствует также и улучшению механических свойств кожи, так как чрезмерное содержание жира приводит к ухудшению механических свойств. Защитное действие в этом случае определяется составом органического растворителя, примененного для пропитки фунгицидом.  [c.90]

Синтезированные отвердители были использованы в композициях с эпоксидными олигшерами марок ЭД-20, Э-40, Э-41. Изучен процесс отверждения, физико-механические и защитные свойства потфы-тий. Обнаружено, что наличие в составе отвердителя уретановой группы приводит к повышению скорости формирования покрытий. Применение УПА вместо немодифицированных полиамйнов позволяет улучшить некоторые физико-механические свойства покрытий, а также повысить их устойчивость в агрессивных средах (в воде, растворах хлорида натрия, кислот, щелочей.  [c.116]

Герметики, физико-механические свойства, кн. 1,табл. 8.67 Гидроксид кальция Са(0Н)2, растворимость в паре, кн. 1, табл. 7.39 Гидроксид натрия NaOH  [c.618]


Смотреть страницы где упоминается термин Натрий Механические свойства : [c.335]    [c.182]    [c.121]    [c.270]    [c.33]    [c.206]    [c.166]    [c.302]    [c.399]    [c.196]    [c.187]    [c.5]    [c.141]    [c.192]    [c.417]    [c.94]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Натрий

Натрий Свойства



© 2025 Mash-xxl.info Реклама на сайте