Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод особых точек определения скоростей

Метод определения перемещений в балках графический 1 (2-я) — 244 Метод определения усилий в стержневых системах I (2-я) — 117 Метод особых точек определения скоростей и ускорений механизмов 2 — 18 Метод повторных сборок исследования технологических процессов производства 5 — 263  [c.153]

Определение скоростей и ускоре.чий механизмов III класса мо/кет быть произведено так называе.М1.1М методом особых точек или точек Ассура, по имени русского ученого Л. В. Ассура, предложившего этот метод.  [c.96]


Уравнения скоростей — Определение методом особых точек 1 — 18  [c.154]

Уравнения и планы скоростей и ускорений групп 111 класса. Определение скоростей и ускорений механизмов 111 класса монет быть сделано методом особых точек.  [c.18]

Рассмотрим теперь вопрос об определении скоростей и ускорений методом особых точек для тех групп, в состав которых наряду е вращательными парами входят также и поступательные пары. Пусть, например, дана группа III класса с тремя поводками и с двумя поступательными парами ЕяС (рис. 281), у которой известны скорости точек В и О, скорости всех точек звена 2 и угловая скорость ш . Для определения особых точек звена 7 можно поступить следующим образом. Через точку В проводим прямую, перпендикулярную к оси х — х направляющей, принадлежащей звену 4. Далее, через точку Е проводим прямую, перпендикулярную к оси у—у направляющей, принадлежащей звену 2. Точка 5, пересечения этих двух прямых и определяет первую особую точку звена 7. Другая особая точка может быть найдена на пересечении прямой, проходящей через Точку В и перпендикулярной к оси х — х, с направлением СО поводка 6, и, наконец, третья особая точка 5а может быть определена на пересечении прямой, проходящей через точку перпендикулярно к оси з —у, с направлением СО поводка 6.  [c.191]

Определение скоростей проводим методом особых точек.  [c.192]

Рис. 15. К определению скоростей и ускорений точек групп III класса методом особой точки Ассура. Рис. 15. К <a href="/info/176523">определению скоростей</a> и <a href="/info/6434">ускорений точек</a> групп III класса <a href="/info/223329">методом особой точки</a> Ассура.
Особую роль пылевой метод играет в определении скорости распространения звука в твердых стержнях. Так, например, на фиг. 147 показаны полученные при помощи ликоподия узловые точки колебаний стеклянного стержня диаметром 8 мм, возбужденного на частоте 285 кгц.  [c.132]

Аналитический метод определения скоростей целесообразно применять, если известны по условию или могут быть без особых затруднений составлены уравнения движения плоской фигуры (1 )- Аналитический метод позволяет, вообще говоря, найти скорость точки плоской фигуры как функцию времени. Однако получить такое решение в обозримом виде не всегда возможно.  [c.539]


В том случае, если в механизм входит трехповодковая группа, для определения скоростей точек ее звеньев следует применять метод ложных положений картины относительных скоростей или особые точки Ассура.  [c.25]

Состояние движения. Жидкость находится в состоянии движе- ния, если любая ее частица в каждый данный момент обладает некоторой скоростью. Чтобы определить движение, надо выделить определенные частицы и проследить их перемещение вдоль их траекторий (метод Лагранжа). Часто, однако, удобнее определять движение путем измерения скорости частиц, проходящих в каждый данный момент через определенную точку (метод Эйлера). В дальнейшем мы будем пользоваться последним методом, за исключением особо оговоренных случаев.  [c.9]

Таким образом, производство медленных нейтронов несложно. Естественно, возникла задача изучения их свойств, что осуществляется со времени их открытия и по сегодняшний день все более мощными средствами. Первые опыты производились методом поглощения, путем отбора медленных нейтронов. Когда говорят о медленных нейтронах, не нужно полагать, что все они имеют одинаковую скорость скорость всех их мала, но неодинакова. Их можно разделить на полосы по скоростям или по энергиям одни, скажем, несколько более быстрые, другие несколько более медленные. Первые указания на особые свойства медленных нейтронов по отношению к поглощению были получены в опытах по поглощению, которые мы здесь описывать не будем в настоящее время такие опыты производятся гораздо более мощными методами. Укажем теперь способы производить медленные нейтроны с одинаковой скоростью, т. е. монохроматические нейтроны, имеющие одинаковую энергию. Есть два способа получения монохроматических нейтронов. Первый из них основывается на применении искусственного источника, например циклотрона. Этот метод состоит в следующем. В циклотроне получается поток ионов, падающих на бериллиевую мишень. В момент падения они рождают нейтроны. Но в циклотроне можно так модулировать источник, чтобы облучение не происходило непрерывно, а совершалось через определенные промежутки времени. Надо открывать источник только на короткие мгновения через правильные промежутки времени, что достигается электрической модуляцией. Таким путем в циклотроне получаются прерывистые пучки ионов, которые, падая на бериллиевую мишень, дают мгновенные волны нейтронов, с модуляцией, регулируемой по произволу. Когда эти нейтроны замедляются, например в парафине, и затем падают на детектор, помещенный на некотором расстоянии, то ясно, что из всех замедленных нейтронов первыми придут на парафин замедлившиеся меньше, а последними — замедлившиеся больше. Отбирая электрическими методами те, которые пришли через определенный интервал времени, мы получаем нейтро-  [c.107]

АССУРА МЕТОД ОСОБЫХ ТОЧЕК — метод кинематического исследования м., предложенный русским ученым Л. В. Ассуром и основанный на определении скоростей и ускорений точек пересечения звеньев, присоединенных к общему звену.  [c.20]

Для кинематического исследбвания механизмов первого класса высших порядков, кроме метода ложных положений картины относительных скоростей и ускорений, применяют также особые точки Ассура на трехшарнирных звеньях, позволяющие определение скоростей и ускорений групп первого класса высших порядков производить теми же методами, что и для двухповодковых групп.  [c.111]

Помимо метода мерной базы для тарировки указателя скорости применяют иногда аэро-лаг — обтекаемое тело с ветрянкой, буксируемое аа самолетом на тросе длиной 20—40 м. Число оборотов ветрянки пропорционально скорости полета и регистрируется особым суммарным счетчиком оборотов. Проведение испытания заключается в полете на любой высоте на разных установившихся режимах горизонтального полета, причем ведутся те же записи, что и при полете на мерной базе, но вместо продолжительности полета базы регистрируется число оборотов ветрянки аа 1 или 2 мин. Воздушная скорость определяется по числу оборотов в минуту ветрянки по тарировочной кривой ее, полученной в аэродинамич. трубе или из ряда полетов на мерной базе. То чность определения скорости на мерной базе или при иомощи аэролага можно оценить в среднем в 1,5%.  [c.228]


Даже в том случае, когда рассматриваются многоступенчатые корабли, а не одноступенчатый, описанный в приведенном выше примере, сохраняется заметное преимущество при использовании метода встречи на орбите, поскольку сбережение топлива должно сказываться тогда, когда массе, остающейся на промежуточной станции, не требуется придавать ускорение при последующих включениях двигателей. Тем не менее методу встреч присущи определенные трудности например, может оказаться невозможным хранение топлива в баках в космическом пространстве в течеиие достаточно длительного времени или обеспечение его перелива из баков-хранилищ без дополнительного массивного оборудования. Возможное решение проблемы состоит в том, что топливо для конечного этапа (Я - Рх) не выводится на орбиту вместе с космическим кораблем, но запускается на нужную околоземную орбиту при помощи специального грузового корабля, как только межпланетный космический корабль возвратится на околоземную орбиту. Если к тому же космический корабль снабжен двигателем малой тяги с высокой скоростью истечения, то он скорее всего будет снаряжаться на околоземной орбите, поскольку подобный корабль нельзя вывести на орбиту непосредственно с поверхности Земли. Поэтому заключительный этап полета будет обеспечиваться при помощи мощных грузовых кораблей. На другом конце траектории межпланетного перелета космический корабль остается на орбите вокруг Марса, в то время как другой грузовой корабль, перенесенный через межпланетное пространство космическим кораблем и выведенный последним иа орбиту ожидания вокруг Л арса, будет использован для осуществления этапов полета (О - Р ) и (Рг - ) Большее число грузовых кораблей создаст дополнительные преимущества в тех случаях, когда уделяется особое вии.маиие фактору безопасности. При некоторых исследованиях здравый смысл требует, чтобы какое-то количество подобных кораблей оставлялось экипажем в конце фазы (Я -> Е) вместе с грузовыми кораблями, исполь.зованными на планете назначения, прежде чем оставшийся межпланетный корабль й дст выведен на гелиоцентрическую орбиту обратного полета.  [c.413]

Измерение статического давления в потоке влажного пара не вызывает особых трудностей. Все известные конструкции зондов статического давления могут быть использованы для измерений, так же как и метод дренирования обтекаемых поверхностей. Однако наиболее удачной оказалась коробчатая конструкция зонда статического давления (рис. 2.27, <3). Такой зонд имеет малые габариты и достаточные проходные сечения приемника. Для определения направления скорости в точке используются обычные пневмометрические угломерные зонды различных конструкций. Однако, как показал опыт, применение пневмометриче-ских угломеров вызывает значительные трудности, связанные с образованием жидких пробок в соединительных коммуникациях. Перспективно применение флажковых угломеров, объединенных с коробчатым зондом статического давления (рис. 2.27, е). Внутри цилиндрического корпуса 4 с обтекателем 3 установлена в двух подшипниках 10 п II полая трубка 5, на конце которой укреплен флажок 2. На боковых поверхностях полого флажка выполнены щели /, воспри-нимающпе статическое давление потока. На другом конце трубки 5 укреплен-указатель угла 9 и диск 7, помещенный в неподвижный корпус 6 масляного демпфера. На корпусе расположена шкала для отсчета угла потока. Через штуцер 8 статическое давление передается к измерительному прибору. Проверка показала, что при тщательном изготовлении зонда погрешность в определении угла и статического давления невелика.  [c.61]

Твердость (см. п. 8.1.2) не является каким-то особым специфическим свойством металла, а испытания на твердость — одна из разновидностей механических испытаний [42]. В зависимости от характера приложения нагрузки и движения индентора (наконечника твердомера) различают методы измерения твердости путем вдавливания, царапания и отскока закаленного стального бойка от поверхности испытуемого материала. В зависимости от скорости приложения на1рузки на индентор различают статические и динамические методы измерения твердости. Наибольшее распространение в технике получили статические методы измерения твердости при вдавливании шара, конуса или пирамиды. По геометрическим размерам отпечатка, полученного при вдавливании индентора под определенной нагрузкой, подсчитывают значение твердости с помощью соответствующих формул и таблиц. В табл. 8.89 приведена краткая классификация основных методов измерения твердости путем вдавливания индентора различной формы.  [c.346]

С точки зрения термодинамики титан является очень неустойчивым металлом (его нормальный потенциал равен —1,63 в), а высокая коррозионная устойчивость титана в большинстве химических сред объясняется образованием на его поверхности заш,итных окисных пленок, исключаюш их непосредственный контакт металла с электролитом. Вследствие этого было интересно исследовать электрохимическое и коррозионное поведение титана в условиях поляризации его переменным током различной частоты, когда в катодный полупериод тока может происходить частичное или полное разрушение пассивного состояния, а в анодный полупериод — его возникновение. Подобные исследования кроме чисто научного интереса представляют, несомненно, и определенную практическую ценность, поскольку титан и его сплавы начинают все шире внедряться в технику как новый конструкционный материал с особыми свойствами и разносторонняя характеристика его коррозионных свойств в различных условиях становится необходимой. Помимо этого, можно полагать, что изучение электрохимических и коррозионных процессов путем наложения на исследуемый электрод переменного тока различной частоты и амплитуды при дальнейшем совершенствовании может явиться наиболее подходяш,им методом для исследования скоростей электродных процессов, а следовательно, и методом изучения механизма электрохимической коррозии и пассивности металлов. Цель настояш,ей работы — выяснение основных факторов, определяющих скорость коррозии титана под действием переменного тока, а также установление механизма образования и разрушения пассивирующих слоев, возникающих на поверхности титана  [c.83]


Нестационарный вариант теории свободного взаимодействия содержит механизм неустойчивости типа Рэлея, имеющий место в нелинейно возмущенных областях с точками перегиба мгновенных профилей продольной скорости. С данным утверждением, составляющим основной вывод [101], связана невозможность повысить точность конечно-разностных методов расчета обсуждаемых течений путем уменьшения шагов сетки. С одной стороны, сгущение узлов фактически вводит более короткие масштабы длин волн, которыми обладают быстро растущие собственные функции задачи, проявляющиеся как вычислительная неустойчивость. Спектральные свойства неустойчивых мод таковы, что нелинейная стадия их нарастания может сопровождаться появлением сингулярности в конечный момент времени. С другой стороны, предположение [105] о связи наблюдаемых в экспериментах [106-108] неустойчивостей в виде высокоинтенсивных импульсов, или "шипов" с самовозбуждающимися в областях с точками перегиба рэлеевскими модами находит определенное подтверждение в исследованиях [109]. С этой точки зрения отмеченное выше особое 1юведение решений асимптотических уравнений в сильно нелинейных областях в какой-то степени отражает реальные процессы разрушения ламинарного режима течения в пограничном слое.  [c.8]


Смотреть страницы где упоминается термин Метод особых точек определения скоростей : [c.193]    [c.312]    [c.56]    [c.102]    [c.510]    [c.253]    [c.411]    [c.94]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Метод особых точек

Метод особых точек определения скоростей ускорений механизмов

Метод точки

Механизмы Уравнения скоростей - Определение методом особых точек

Определение скорости точки

Особые

Скорость Определение

Скорость точки

Точка особая



© 2025 Mash-xxl.info Реклама на сайте