Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерий Мизеса разрушения

Действительно, в соответствии с критерием Мизеса [1]в условиях плоской деформации напряжения в пластической зоне повышаются примерно в 3 раза. В то же время при плоском напряженном состоянии напряжения возрастают всего лишь в 1,15 раза. Из рис. 5.5 видно, почему при плоской деформации, когда реальный предел текучести в зоне процесса практически утраивается, разрушение происходит при значительно меньших значениях деформации, чем при плосконапряженном состоянии. Можно предположить, что если в условиях плоской деформации напряжения в зоне процесса в самом деле повышаются втрое, то тогда можно допустить, что в этом случае разрушение определяется только деформацией и можно попытаться определять вязкость разрушения только деформационным критерием.  [c.200]


Однако, если размеры образца таковы, что dlt<.8, то процесс разрушения происходит в условиях плоского деформированного состояния при этом можно непосредственно определить истинный предел текучести. Образец на рис. 8.9 и 8.10 имел d/f l,2 и разрушение происходило в условиях плоского деформированного состояния. При этом на основании того, что плоскость скольжения составила с осью растяжения угол 52° и удовлетворялся критерий Мизеса , можно сказать, что аморфный металл показал себя как идеально пластичное тело.  [c.233]

Таким образом, последние годы отмечены значительным прогрессом в развитии теории прочности материалов при сложном напряженном состоянии. Критерии (6.8) и (6.10) получили экспериментальную проверку на сильно анизотропных материалах типа стеклопластиков [34, 39, 86, 132, 1561, изотропных жестких полимерах [97, 156]. Критерий (6.14) проверен в опытах на металлах и сплавах, а также на некоторых жестких пенопластах [130, 131, 1341. Наряду с этим имеются работы, посвященные проверке пригодности традиционных критериев прочности к описанию предельных свойств полимеров при кратковременном нагружении. В опытах А. М. Жукова [681 установлено, что в первом квадранте плоскости главных напряжений разрушение оргстекла удовлетворительно описывается теорией наибольших нормальных напряжений. Данные по пределам текучести этого материала, опубликованные в [194, 254), в том же квадранте хорошо согласуются с критерием Мизеса, а при двухосном растяжении—сжатии — с видоизмененным критерием Мизеса, учитывающим различия в сопротивлении оргстекла (ПММА) растяжению и сжатию [1941. В [208, 2091 представлены результаты испытаний образцов из  [c.209]

Обобщение высказанных положений для формулировки критерия разрушения в общих чертах было дано Мизесом [49] впоследствии Хилл [22] вновь вернулся к этому обобщению. В обеих формулировках принимается гипотеза о том, что условие текучести анизотропных материалов, как и в случае изотропии, не зависит от гидростатического давления. Это предположение на-  [c.432]

Гг. Согласно критерию текучести Мизеса, = 2й где к — общепринятый предел текучести при сдвиге для матрицы, а Цз — поперечная компонента напряжений (а > о ). Эти соображения показывают потенциально важную роль поперечных напряжений сжатия для устранения возможности возникновения пор между частицами. Следует отметить, что в деформированных сфероидизированных сталях часто наблюдалось образование пор между двумя близкорасположенными частицами цементита, хотя, но сведениям автора, их роль в пластическом разрушении специально не исследовалось.  [c.71]


Учитывая, что пластическая деформация происходит без изменения объема, в 1904 г. Губер, в 1913 г. Мизес и в 1924 г. Генки предложили в качестве критерия прочности принять не всю потенциальную энергию деформации, а только ту ее часть, которая идет на изменение формы тела. Таким образом, начало текучести или разрушение материала независимо от вида напряженного состояния будет иметь место, если потенциальная энергия формоизменения Ф в единице объема достигнет некоторого предельного (опасного) для данного материала значения Ыф, т. е.  [c.141]

Чрезвычайно большая долговечность при ао/а = О (простое растяжение) обусловлена тем, что, хотя трещина частично и проникает через стенку цилиндра, но разрушения еще не наблюдается. Следовательно, время до образования поверхностных трещин почти не зависит от отношения напряжений (принимая в качестве критерия эквивалентное напряжение), однако периоды распространения трещин существенно различаются. Можно считать, что у тех материалов, у которых образование трещин происходит быстро, а период их распространения довольно длительный, напряженное состояние и форма образцов оказывают влияние на результаты испытаний (например, на рис. 5.14). Если такое влияние устранить (например, путем проведения испытаний на ползучесть до разрушения с использованием плоских образцов, подвергнутых двухосному растяжению), то это должно дать возможность определить насколько применимы максимальные главные напряжения или эквивалентные напряжения Мизеса для анализа результатов.  [c.143]

Энергетический критерий. Этот критерий, развитый Мизесом и Генки, предполагает, что разрушение происходит тогда, когда энергия сдвига достигает некоторой определенной величины. Эта энергия сдвига является функцией трех главных напряжений. Предполагается, что причиной возникновения опасных деформаций является не вся потенциальная-энергия деформации, а только та часть ее, которая связана с изменением формы элементарных объемов материала и равная разности между общей энергией упругой деформации и упругой энергией, необходимой для изменения объема элемента.  [c.394]

Критерии текучести. Наиболее широко применяемые при проектировании артиллерийского оружия критерии разрушения обусловливают установление пределов, которые предотвращают чрезмерную пластическую деформацию материала и обеспечивают стабильность размеров детали или узла. Это вытекает из требования сохранить размеры деталей, работающих в критических условиях. Теории пластического течения, на которых основаны эти критерии, близки к теории максимального касательного напряжения и теории энергии формоизменения (Мизес — Генка).  [c.316]

В тесной связи с исследованиями условий текучести велись работы по близкой теме — установлению критериев разрушения. Для многих материалов (например, грунтов, бетона и т. д.) условие Мизеса, трактуемое как условие разрушения, не подтверждалось опытом. Для них были предложены более общие условия, в которые входят, помимо второго, первый и третий инварианты тензора напряжений.  [c.262]

Таким образом, если для пластичных изотропных материалов за условие наступления предельного напряженного состояния с достаточным приближением может быть принято условие Мизеса — Генки, то для хрупких материалов пока трудно отдать предпочтение какой-либо теории. Исследование критериев разрушения материалов, по-разному сопротивляющихся растяжению и сжатию, остается одним из актуальнейших вопросов механики деформируемых тел.  [c.93]

Подавляющее большинство реальных конструкционных материалов занимает промежуточное положение между пластичными предельное состояние которых удовлетворительно описывается (дающими малые — до 14% — расхождения) условиями Кулона и Мизеса, и идеально хрупкими, критерием разрушения которых может служить максимальное нормальное напряжение (первая теория прочности). Учитывая общее свойство материалов, заключающееся в том, что по мере перехода от пластичных материалов к хрупким соотношение между предельными напряжениями при  [c.121]


Более общие формулы для оценки усталостной прочности при сложном напряженном состоянии приведены в работах [3, 4, 12]. Отправной точкой при построении этих формул являются теории прочности для статического нагружения. Поскольку усталостное разрушение есть процесс накопления и развития местных пластических деформаций, то естественно, что наиболее удачные критерии получают обобщением критерия Сен-Венана и критерия Губера—Мизеса в теории пластичности. Подробнее об опытных данных и приемах расчета с учетом различных факторов см. в работах [12, 14, 15].  [c.154]

Губер в 1904 г, высказал предположение, что разрушение материала происходит тогда, когда достигается предельное значение либо полной упругой энергии, либо энергии изменения формы, в зависимости от того, отрицательно или положительно р. Когда гидростатическая часть тензора напряжений отрицательна, то есть происходит всестороннее сжатие, критерий прочности Губера совпадает с условием постоянства октаэдрического напряжения Мизеса. При всестороннем растяжении начало разрушения определяется, по Губеру, полной удельной энергией.  [c.103]

При / > о материал не разрушается, при / = 0 — находится на грани разрушения, при / > 0 условие прочности нарушается. В обозначениях Чамиса индексы 1, 2, 3 определяют главные оси однонаправленного материала, I — слой, аир — растяжение или сжатие, Р — предел прочности. Для изотропного материала К-т = 1, и равенство (19) совпадает с критерием Мизеса. Коэффициент Сг12аЗ введен для того, чтобы учесть различную прочность однонаправленного материала при растяжении и сжатии (эффект Баушингера в теории пластичности). Он также учитывает непостоянный характер взаимодействия между напряжениями. Значения коэффициентов и п2а 3 можно определить по  [c.84]

Рис. 18. Данные о разрушении, снесенные па плоскость (ai, Стг) напряжения указаны в килофунт/дюйм1 а — используется тензорно-полиномиальный критерий, б — используется критерий максимальной деформации s — используется модифицированный критерий Мизеса — Хилла. Рис. 18. Данные о разрушении, снесенные па плоскость (ai, Стг) напряжения указаны в килофунт/дюйм1 а — используется тензорно-полиномиальный критерий, б — используется критерий максимальной деформации s — используется модифицированный <a href="/info/128132">критерий Мизеса</a> — Хилла.
Применение двух-, трех- и тем более четырехпараметрических критериев дает возможность уточнять условия разрушения по сравнению с однопараметрическими критериями Мизеса и максимальных касательных напряжений, что существенно для конструкций ответственного назначения  [c.83]

Условие пластичности Мизеса (см. раздел 1,Б) основано на предположении, что гидростатические напряжения не влияют на переход материала в пластическое состояние. В связи с этим при формулировке критерия энергии формоизменения энергия, связанная с изменением объема (для изотропных материалов) исключается из общей энергии деформации. Все используемые критерии разрушения не учитывают влияния гидростатических напряжений на прочность материала. Влияние объемных деформаций в анизотропных материалах исследовано в работе Ву и Джерина [19]. На основании экспериментов по кручению трубок ими сделан вывод о незначительном влиянии объемных деформаций.  [c.103]

Гриффитса Ирвина — Оровано критерий 47 Гриффитса теория 45, 46 Губера — Мизеса — Генки гипотеза см Формоизменения удельной энергии, ги-потеза разрушения Гудмана диаграмма см. Смита диаграмма  [c.615]


Смотреть страницы где упоминается термин Критерий Мизеса разрушения : [c.433]    [c.159]    [c.160]    [c.75]    [c.210]    [c.141]    [c.107]    [c.85]   
Термопрочность деталей машин (1975) -- [ c.29 , c.30 , c.31 , c.79 ]



ПОИСК



Критерий разрушения

Мизесу



© 2025 Mash-xxl.info Реклама на сайте